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In this note C denotes the complex number field, and Zm denotes the cyclic group of

order m.

Abstract : In this note we determine the universal R-matrices of the group Dm,n

generated by s and t subject to the relations sm = 1, t2 = sn and tst−1 = s−1. Here,

m ≥ 3 and n ≥ 1 are integers. The group Dm,n is the dihedral group D2m of order 2m if

m = n, and is the quaternion group Q2m of order 2m if m = 2n.

Theorem. If m 6= 4, or if m = 4 and n is odd, then the universal R-matrices of C[Dm,n]

are the universal R-matrices of C[〈s〉], where 〈s〉 is the cyclic subgroup generated by s.

So, the number of the universal R-matrices of C[Dm,n] is m.

If m = 4 and n is even, then a universal R-matrix of C[Dm,n] is one of the following.

(i) a universal R-matrix of C[〈s〉],
(ii) R̃a,µ =

1
4

∑
α,β,i,j=0,1

aαβ(−1)jα+iβtαs2i+αµ ⊗ tβs2j+βµ, where a2 = (−1)
n
2 , µ = 0, 1.

So, the number of the universal R-matrices of C[D4,n], where n is even, is 8.

In order to prove the theorem we use representation theory of cyclic groups.

As a corollary to Theorem we obtain the following:

Corollary. The representation categories of C[D8] and C[Q8] are not equivalent as ab-

stract tensor categories.

We prove this by calculating the category-theoretic rank of the quasitriangular Hopf

algebra (C[D4,n], R̃a,µ). The concept of category-theoretic rank is introduced by Majid

[5].

Introduction. The notion of a universal R-matrix was introduced by Drinfel’d at the

same time of finding quantum groups [3][4]. The notion of a ribbon Hopf algebra was

introduced by Reshetikhin and Turaev to construct invariants of knots and 3-manifolds

[9][10] together with a background of quantum physics. It is known that such invariants

are one of the most powerful tools in low-dimensional topology. So, it is important to

find a new solution of a universal R-matrix and a ribbon element of a given Hopf algebra.

For integers m ≥ 3 and n ≥ 1, let Dm,n denotes the finite group defined by

Dm,n = 〈s, t | sm = 1, t2 = sn, tst−1 = s−1〉,
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which includes a cyclic subgroup of index 2. If m = n, then Dm,n is the dihedral group

D2m of order 2m, and if m = 2n, then it is the quaternion group Q2m of order 2m. We de-

termine the universal R-matrices of the group Hopf algebra C[Dm,n], and also determine

the ribbon elements of any quasitriangular Hopf algebra (C[Dm,n], R) by using the rep-

resentation theory of cyclic groups. On general facts of Hopf algebras and representation

theory, see the Abe’s book [1] and the Curtis and Reiner’s book [2], respectively.

Let us recall the definitions of a universal R-matrix and a ribbon element.

Definition(Drinfel’d [2]) Let A = (A,∆, ε, S) be a Hopf algebra over a field k, and

let R be an invertible element in A ⊗ A. The pair (A,R) is said to be a quasitriangular

Hopf algebra, or R is said to be a universal R-matrix of A if the following conditions are

satisfied:

(QT.1) ∆cop(a) · R = R · ∆(a) for all a ∈ A,

(QT.2) (∆ ⊗ id)(R) = R13R23,

(QT.3) (id ⊗ ∆)(R) = R13R12.

Here, ∆cop denotes the opposite comultiplication defined by ∆cop = T ◦ ∆, and Rij ∈
A ⊗ A ⊗ A is given by R12 = R ⊗ 1, R23 = 1 ⊗ R and R13 = (T ⊗ id)(R23), and T is the

linear transformation on A ⊗ A such that T (a ⊗ b) = b ⊗ a for all a, b ∈ A.

It is immediate to show that for a universal R-matrix R, the equations (ε ⊗ id)(R) =

1, (id⊗ε)(R) = 1 hold. Conversely, by Radford [7, p.4 Lemma 1], if an element R ∈ A⊗A

satisfies the conditions

(i) (∆ ⊗ id)(R) = R13R23,

(ii) (ε ⊗ id)(R) = 1,

then R is invertible. Thus, an element R ∈ A⊗A is a universal R-matrix of A if and only

if the conditions (QT.1), (QT.2), (QT.3) and

(QT.4) (ε ⊗ id)(R) = 1

are satisfied.

For a finite group G the group algebra k[G] over a field k has a canonical Hopf algebra

structure. The structure is given by

∆(g) = g ⊗ g, ε(g) = 1 and S(g) = g−1 for g ∈ G.

This Hopf algebra is referred as the group Hopf algebra of G over k. Any group Hopf

algebra has at least one universal R-matrix, namely, R = 1 ⊗ 1.

For a quasitriangular Hopf algebra (A,R =
∑

i αi⊗βi), a distinguished element u ∈ A,

called the Drinfel’d element of (A,R), is defined by

u =
∑

i

S(βi)αi.

The Drinfel’d element u is invertible, and S2(a) = uau−1 for all a ∈ A.
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Definition.(Reshetikhin and Turaev [9]) Let (A,R) be a quasitriangular Hopf algebra

over a field k, and u be the Drinfel’d element of (A,R). A central element v ∈ A is said

to be a ribbon element, or the triple (A, R, v) is said to be a ribbon Hopf algebra if the

following four conditions are satisfied:

(Rib.1) v2 = uS(u),

(Rib.2) S(v) = v,

(Rib.3) ε(v) = 1,

(Rib.4) ∆(v) = (R21R)−1(v ⊗ v),

where R21 =
∑

i βi ⊗ αi for R =
∑

i αi ⊗ βi.

1. The Main results

To describe our main results, we need to the universal R-matrices and the ribbon

elements of the group Hopf algebra of a cyclic group. The following theorem is partially

obtained by H.Murakami, Ohtsuki, Okada [6], and Radford [7, 8].

Theorem 1.1. Let s be a generator of Zm, and ζ be a primitive m-th root of unity. Then,

the universal R-matrices of the group Hopf algebra C[Zm] are given by the formula

Rd =
1
m

m−1∑
k,i=0

ζ−iksk ⊗ sdi (d ∈ {0, 1, · · · ,m − 1}).

Furthermore, the number of the ribbon elements of the quasitriangular Hopf algebra (C[Zm],

Rd) is one or two according to the parity of m. More precisely, the ribbon elements are

given by the formula

v =
1
m

m−1∑
k=0

m−1∑
j=0

νjζ−dj2−kjsk,

where ν = 1 if m is odd, and ν = ±1 if m is even.

A proof of this theorem is given in the next section.

Now, we describe the main results. Let m ≥ 3 and n ≥ 1 be integers. In the group Dm,n,

the subgroup generated by s is isomorphic to the cyclic group Zm. Since all universal

R-matrices Rd (d = 0, 1, · · · ,m− 1) in Theorem 1.1 satisfy ∆cop(t) ·Rd = Rd ·∆(t), they

are also universal R-matrices of C[Dm,n]. Furthermore, the ribbon elements v given in

Theorem 1.1 satisfy vt = tv. Thus, they are ribbon elements of the quasitriangular Hopf

algebra (C[Dm,n], Rd).

Theorem 1.2. If m 6= 4, or if m = 4 and n is odd, then the number of universal R-

matrices of C[Dm,n] is m, and a universal R-matrix of C[Dm,n] is a universal R-matrix

of C[〈s〉]. A ribbon element of the quasitriangular Hopf algebra (C[Dm,n], Rd) is a ribbon
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element of (C[〈s〉], Rd). If m = 4 and n is even, then a universal R-matrix of C[Dm,n] is

one of the universal R-matrices Rd (d = 0, 1, 2, 3), and

R̃a,µ =
1
4

∑
α,β,i,j=0,1

aαβ(−1)jα+iβtαs2i+αµ ⊗ tβs2j+βµ,

where a2 = (−1)
n
2 and µ = 0, 1. If a2 = 1, then the ribbon elements of (C[D4,n], R̃a,µ) are

1, s2, and if a2 = −1, then the ribbon elements of (C[D4,n], R̃a,µ) are ±
√
−1
2 (1 − s2) +

1
2(s + s3).

The proof of this theorem is also given in the next section.

2. Proofs of Theorems 1.1 and 1.2

For a finite group G let χ1, · · · , χn be the irreducible characters of G over C. For each

i = 1, · · · , n, we set

Ei :=
degχi

|G|
∑
g∈G

χi(g−1)g ∈ C[G].

Then, Ei (i = 1, · · · , n) are the primitive idempotents of C[G], that is,

EiEj = δijEi (i, j = 1, · · · , n), E1 + · · · + En = 1.

Let s be a generator of the cyclic group Zm, and ζ be a primitive m-th root of unity.

Then, the irreducible characters χk : Zm −→ C (k = 0, 1, · · · ,m − 1) are given by

χk(si) = ζki (i = 0, 1, · · · ,m − 1).

Thus, the primitive idempotent Ek associated to the irreducible character χk is given

by

Ek =
1
m

m−1∑
i=0

ζ−kisi. · · · · · · · · · 1©

Since Eks = ζkEk, the equation

si = 1 · si =
m−1∑
k=0

Eks
i =

m−1∑
k=0

ζikEk

holds for i = 0, 1, · · · ,m − 1.

For a convenience, we define Ek for all integer k by the right-hand side of 1©. Then,

the equation Em+k = Ek holds for all k ∈ Z. Since ζ is a primitive m-th root of unity,

for an integer p,
m−1∑
i=0

ζip =

{
m if p ≡ 0 (mod m),
0 otherwise.

It follows that ∆(Ek) =
∑m−1

j=0 Ej ⊗ Ek−j .
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(Proof of Theorem 1.1) First, let us derive the necessary and sufficient conditions that

an element R ∈ C[Zm] ⊗ C[Zm] is a universal R-matrix. We write R in the from

R =
m−1∑
i,j=0

aijEi ⊗ Ej (aij ∈ C),

where the indices i, j of a are treated as modulo m. Then, we have

(∆ ⊗ id)(R) = R13R23

⇐⇒ ai+k j = akjaij for i, j, k = 0, 1, · · · ,m − 1

=⇒

{
aij = (a1j)i for i = 1, · · · ,m − 1 and j = 0, 1, · · · ,m − 1,

a0j = (a1j)m.

Similarly, we have

(id ⊗ ∆)(R) = R13R12

=⇒

{
aij = (ai1)j for i = 0, 1, · · · ,m − 1 and j = 1, · · · ,m − 1,

ai0 = (ai1)m.

Thus, if R is a universal R-matrix, then a1j = (a11)j is required for j = 1, · · · ,m − 1.

Since ε(Ek) = 1
m

∑m−1
i=0 ζ−ki = δk0, we see that{

(ε ⊗ id)(R) = 1 ⇐⇒ a0j = 1 (j = 0, 1, · · · ,m − 1),
(id ⊗ ε)(R) = 1 ⇐⇒ ai0 = 1 (i = 0, 1, · · · ,m − 1).

Hence, if R is a universal R-matrix of C[Zm], then

am
11 = 1 and aij = (a11)ij (i, j = 0, 1, · · · ,m − 1).

From am
11 = 1, the number a11 can be expressed as a11 = ζd for some d ∈ {0, 1, · · · , m−1}.

Then,

R =
m−1∑
i,j=0

ζdijEi ⊗ Ej

=
1

m2

m−1∑
l,k,i=0

ζ−ik
m−1∑
j=0

ζdij−jlsk ⊗ sl

=
1
m

m−1∑
k,i=0

ζ−iksk ⊗ sdi.

Conversely, it can be checked that the above R is a universal R-matrix of C[Zm].

Next, we show the remaining part. For the above R, the Drinfel’d element u is given

by

u =
1
m

m−1∑
k,i=0

ζ−iks−k+di =
1
m

m−1∑
i,j=0

ζdij
m−1∑
k=0

ζ−k(i+j)Ej =
m−1∑
j=0

ζ−dj2
Ej .

Since S(Ej) = E−j (j = 0, 1, · · · , m − 1), we have uS(u) =
∑m−1

j=0 ζ−2dj2
Ej . Thus, a

ribbon element v of the quasitriangular Hopf algebra (C[Zm], R) can be written as in the
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form

v =
m−1∑
j=0

νjζ
−dj2

Ej ,

where νj = ±1 (j = 0, 1, · · · ,m − 1). Hereinafter, the index j of ν is treated as modulo

m. Since

S(v) =
m−1∑
j=0

νm−jζ
−dj2

Ej , ε(v) =
m−1∑
j=0

νjζ
−dj2

δj0 = ν0,

we have {
S(v) = v ⇐⇒ νj = νm−j (j = 1, · · · ,m − 1), · · · · · · · · · 2©
ε(v) = 1 ⇐⇒ ν0 = 1. · · · · · · · · · 3©

Since

R21R =
1

m2

m−1∑
i,j,k,l=0

ζ−jk−ilsk+di ⊗ sl+dj

=
1

m2

m−1∑
a,b=0

m−1∑
i,j=0

ζdia+djb
m−1∑
k=0

ζ(−j+a)k
m−1∑
l=0

ζ(−i+b)lEa ⊗ Eb

=
m−1∑
a,b=0

ζ2dabEa ⊗ Eb

and

∆(v) =
m−1∑
a=0

m−1∑
b=0

νa+bζ
−d(a+b)2Ea ⊗ Eb,

we have

(R21R) · ∆(v) = v ⊗ v ⇐⇒ νaνb = νa+b (a, b = 0, 1, · · · ,m − 1)

⇐⇒ νa = νa
1 (a = 1, · · · ,m − 1,m) or

νa = 0 (a = 0, 1, · · · ,m − 1). …… 4©

It follows from 2©, 3©, 4© that νm
1 = 1, and hence, if m is odd, then ν1 = 1. Thus, if v

is a ribbon element of the quasitriangular Hopf algebra (C[Zm], Rd), then v is given by

v =
m−1∑
j=0

νj
1ζ

−dj2
Ej ,

where ν1 = 1 if m is odd, and ν1 = ±1 if m is even. Conversely, the above v satisfies

2©, 3©, 4©, and hence v is a ribbon element of (C[Zm], Rd). ¤

Let us concern to prove Theorem 1.2. Since the cyclic subgroup 〈s〉 of Dm,n has

order m, the subgroup can be identified with Zm. Then, the set {E0, E1, · · · , Em−1} ∪
{tE0, tE1, · · · , tEm−1} is a basis of C[Dm,n]. By using this basis, the universal R-matrices

and the ribbon elements of C[Dm,n] are determined .
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(Proof of Theorem 1.2) Let us determine the universal R-matrices of C[Dm,n]. Let

R be an element of C[Dm,n] ⊗ C[Dm,n], and write it as in the form

R =
∑

α,β=0,1
i,j=0,1,··· ,m−1

aαi
βj tαEi ⊗ tβEj (aαi

βj ∈ C),

where the indices i, j of aαi
βj are treated as modulo m. Since

R · s ⊗ s =
∑
α,β
i,j

aαi
βjζ

i+jtαEi ⊗ tβEj ,

s ⊗ s · R =
∑
α,β
i,j

aαi
βjt

αs(−1)α
Ei ⊗ tβs(−1)β

Ej

=
∑
α,β
i,j

aαi
βjζ

(−1)αi+(−1)βjtαEi ⊗ tβEj ,

we have

s ⊗ s · R = R · s ⊗ s ⇐⇒ aαi
βjζ

i+j = aαi
βjζ

(−1)αi+(−1)βj for all α, β, i, j.

Here, for α, β = 0, 1,

ζi+j = ζ(−1)αi+(−1)βj ⇐⇒ i + j ≡ (−1)αi + (−1)βj mod m

⇐⇒


2i ≡ 0 (mod m) if α = 1, β = 0,

2j ≡ 0 (mod m) if α = 0, β = 1,

2(i + j) ≡ 0 (mod m) if α = 1, β = 1.

Thus, under the assumption m ≥ 3, we have:

• a11
0j = a0i

11 = 0 for i, j = 0, 1, · · · ,m − 1, · · · · · · · · ·●1
• in the case when m is odd, a11

1j = a1j
11 = 0 for j 6= m − 1, · · · · · · · · · ●2

• in the case when m is even, a11
1j = a1j

11 = 0 for j 6= m′ − 1,m − 1.

On the other hand, since Ekt = tE−k for k = 0, 1, · · · , m − 1, we have

t ⊗ t · R = R · t ⊗ t ⇐⇒ aαi
βj = aα −i

β −j for all α, β, i, j. · · · · · · · · · ●3

Since

(∆ ⊗ id)(R) =
∑
α,β
i,j

∑
k

aαi
βj tαEk ⊗ tαEi−k ⊗ tβEj ,

R13R23 =
∑

α,β,α′,β′

i,j,k,l

aαk
βl aα′i

β′j tαEk ⊗ tα
′
Ei ⊗ tβ+β′

E(−1)β′ lEj

=
∑

α,α′,β
i,j,k

∑
β1+β2=β

aα k
β1(−1)β2j

aα′i
β2jζ

njβ1β2 tαEk ⊗ tα
′
Ei ⊗ tβEj ,

a necessary and sufficient condition for (∆ ⊗ id)(R) = R13R23 is

δα,α′aα i+k
β j =

∑
β1+β2=β

aα k
β1(−1)β2j

aα′i
β2jζ

njβ1β2 · · · · · · · · · ●4
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for all α, α′, β = 0, 1, i, j, k = 0, 1, · · · ,m − 1. Here, δα,α′ stands for Kronecker’s delta.

Similarly, we see that a necessary and sufficient condition for (id⊗∆)(R) = R13R12 is

δβ,β′aα i
β j+k =

∑
α1+α2=α

a
α1(−1)α2 i
β j aα2i

β′kζ
niα1α2 · · · · · · · · ·●4 ′

for all α, β, β′ = 0, 1, i, j, k = 0, 1, · · · ,m − 1. By using ●4 and ●4 ′, repeatedly, we have

(∆ ⊗ id)(R) = R13R23

=⇒ for all α, β = 0, 1, i, j = 0, 1, · · · , m − 1

aα i+1
β j =

∑
β1+β2+···+βi+1=β

(
i∏

g=1

aα 1
βg(−1)βg+1+···+βi+1j

)aα 1
βi+1jζ

nj
P

u<v βuβv ,

(id ⊗ ∆)(R) = R13R12

=⇒ for all α, β = 0, 1, i, j = 0, 1, · · · , m − 1

aα i
β 1+k =

∑
α1+α2+···+αk+1=α

(
k∏

g=1

a
αg (−1)αg+1+···+αk+1 i
β 1 )aαk+1i

β 1 ζni
P

u<v αuαv .

By ●1 , we obtain

(2.3)

{
a1 i+1

β j = δβ,i+1(a1 1
1 j )

[ i
2
]+1(a1 1

1 −j)
[ i+1

2
]ζnji(i+1)/2,

aα i
1 1+k = δα,k+1(a1 i

1 1)
[ k
2
]+1(a1 −i

1 1 )[
k+1
2

]ζnik(k+1)/2,

where the indices of Kronecker’s deltas δβ,i+1, δα,k+1 are treated as modulo 2, and for a

real number x, denoted by [x] is the maximum integer such that it is less than or equal

to x. By (2.3) and ●2 , in the case when m is odd, we have{
a1 i+1

β j = 0 for β = 0, 1 and (i, j) 6= (0, m − 1),
aα i

1 1+k = 0 for α = 0, 1 and (k, i) 6= (0,m − 1),

and in the case when m 6= 4 is even, by 1 6= m′ − 1,m − 1, m′ + 1 6= m′ − 1,m − 1, we

have {
a1 i+1

β j = 0 for β = 0, 1 and (i, j) 6= (0,m − 1), (0,m′ − 1),
aα i

1 1+k = 0 for α = 0, 1 and (k, i) 6= (0,m − 1), (0,m′ − 1).

Furthermore, by ●3 we see that a1 1
β m−1 = a1 m−1

β 1 , a1 1
β m′−1 = a1 m−1

β m′+1 and aα m−1
1 1 =

aα 1
1 m−1, aα m′−1

1 1 = aα m′+1
1 m−1 . So, if m 6= 4, then{

a1 i
β j = 0 for β = 0, 1 and i, j = 0, 1, · · · ,m − 1,

aα i
1 j = 0 for α = 0, 1 and i, j = 0, 1, · · · ,m − 1.

This concludes that if m 6= 4, then any universal R-matrix of C[Dm,n] is a universal

R-matrix of C[Zm].

Let us consider the case when m = 4. By●1 , the equations a11
0i = a0i

11 = 0 (i = 0, 1, 2, 3)

hold. Combining these equations and ●3 , we have a13
0i = a0i

13 = 0 (i = 0, 1, 2, 3). On the

other hand, by ●2 , the equation a11
10 = a11

12 = a10
11 = a12

11 = 0 hold. Combining these
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equations and (2.1), we have a1i
10 = a1i

12 = a10
1i = a12

1i = 0 (i = 0, 1, 2, 3). Moreover, by

(2.3), we have

(2.4)


a13

11 = a11
13(a

11
11)

2ζ3n, a13
13 = a11

11(a
11
13)

2ζ9n,

a10
0j = (a1 1

1 j )
2(a1 1

1−j)
2ζ6nj , a12

0j = a1 1
1 ja

1 1
1−jζ

nj ,

a0i
10 = (a1 i

1 1)
2(a1−i

1 1 )2ζ6ni, a0i
12 = a1 i

1 1a
1−i
1 1 ζni.

We set a := a11
13 = a13

11.

• If a = 0, then by (2.4) and ●3 ,

a1i
1j = a1i

0j = a0i
1j = 0

for all i, j = 0, 1, 2, 3. Thus, in this case, R is a universal R-matrix of C[〈s〉].
• If a 6= 0, then by (2.4),

(a11
11)

2 = ζ−3n = ζn, 1 = a2ζ9n = a2ζn,

a10
01 = a2ζ−n, a12

01 = a11
11aζn, a12

03 = a11
11aζ−n,

a01
10 = a2ζ−n, a01

12 = a11
11aζn, a03

12 = a11
11aζ−n.

Combining these equations and ●3 , we see that ζ2n = 1, a2 = ζn. In particular, n is

needed to be even. So, for ν = ±1, we have

a1i
1j =


a if (i, j) = (1, 3), (3, 1),
νa if (i, j) = (1, 1), (3, 3),
0 otherwise,

a1i
0j = a0j

1i =


1 if (i, j) = (0, 1), (0, 3),
ν if (i, j) = (2, 1), (2, 3),
0 otherwise.

To determine the value of a0i
0j , we substitute α′ = 0, α = β = 1, i = j = k = 1 to ●4 .

Then

0 =
∑

β1+β2=1

a1 1
β1(−1)β2

a0 1
β21ζ

nβ1β2 .

Since a01
11 = 0, the above equation is equivalent to a11

11a
01
01 = 0. Since a11

11 6= 0, it follows

that a01
01 = 0. From (2.1) and (2.2) in the case of α = β = 0, the equations a0i

01 = a01
0i =

0 (i = 0, 1, 2, 3) are obtained. Thus, by ●3 , the equations a0i
03 = a03

0i = 0 (i = 0, 1, 2, 3)

hold. From (2.1) and (2.2) in the case of α = β = 0 and a01
00 = a01

02 = 0, we have

a00
00 = a02

00 = a00
02 = a02

02 = 1. As a consequence,

a0i
0j =

{
1 if (i, j) = (0, 0), (0, 2), (2, 0), (2, 2),
0 otherwise.

Therefore, if a 6= 0 (and n is even), then R can be written as

(2.5) R =
∑

α,β=0,1
i,j=0,1

aαβνiα+jβ+αβtαE2i+β ⊗ tβE2j+α,

9



where a2 = (−1)
n
2 and ν = ±1. It is easy to show that the above R satisfies (ε⊗id)(R) = 1.

Since

E0 + E2 =
1
2
(s0 + s2), E1 + E3 =

1
2
(s0 − s2),

E0 − E2 =
1
2
(s + s3), E1 − E3 =

√
−1
2

(−s + s3),

the element R of (2.5) can be rewritten as

R =
1
4

∑
α,β=0,1
i,j=0,1

aαβ(−1)jα+iβtαs2i+αµ ⊗ tβs2j+βµ,

where µ = 0 or µ = 1 according to ν = 1 or ν = −1. Conversely, one can prove that the

above R is a universal R-matrix of C[D4,n].

Let us determine when an element

v =
m−1∑
i=0

(aiEi + bitEi), (ai, bi ∈ C, i = 0, 1, · · · ,m − 1)

is a ribbon element of (C[Dm,n], R). Since

sv =
m−1∑
i=0

(aiζ
iEi + biζ

−itEi), vs =
m−1∑
i=0

(aiζ
iEi + biζ

itEi),

we see that

vs = sv ⇐⇒ biζ
−i = biζ

i for i = 0, 1, · · · ,m − 1.

For a given i = 0, 1, . . . ,m − 1, a necessary and sufficient condition for ζi = ζ−i is

2i ≡ 0 (mod m). Thus, if vs = sv, then b1 = 0. Next, let us consider a condition for

(R21R)∆(v) = v ⊗ v. Note that ∆(v) is given by

∆(v) =
m−1∑
i,j=0

(aiEj ⊗ Ei−j + bitEj ⊗ tEi−j)

under the treatment of the indices i, j of a and b as modulo m.

• In the case of R := Rd, we have

(R21R)∆(v) =
m−1∑
i,j=0

(ζ2dijai+jEi ⊗ Ej + ζ2dijbi+jtEi ⊗ tEj).

So, for all i, j = 0, 1, · · · ,m − 1,

(R21R)∆(v) = v ⊗ v ⇐⇒


aiaj = ζ2dijai+j ,

aibj = 0,

bibj = ζ2dijbi+j .

In particular, for each i = 0, 1, · · · , m − 1 the equation bi+1 = ζ−2dibib1 is required. If v

is a ribbon element, then bi = 0 for all i = 0, 1, · · · ,m − 1.

• In the case when m = 4, n is even, and R = R̃a,µ (a2 = (−1)
n
2 , µ = 0, 1), then by (2.5)

10



R21R

=
∑

α,βγ,δ
i,j,k,l

aαβ+γδνiα+jβ+αβ+kγ+lδ+γδtβE2j+αtγE2k+δ ⊗ tαE2i+βtδE2l+γ

=
∑

α,βγ,δ
i,j,k,l

aαβ+γδνiα+jβ+αβ+kγ+lδ+γδtβ+γE(−1)γ(2j+α)E2k+δ ⊗ tα+δE(−1)δ(2i+β)E2l+γ

=
∑

α,β=0,1
i,j=0,1

a2(iα+jβ)E2i+β ⊗ E2j+α.

It follows that, in the expression of (R21R)∆(v) with respect to the basis {tαEi ⊗
tβEj | α = 0, 1, i, j = 0, 1, 2, 3}, the coefficients of tEi ⊗ Ej and Ei ⊗ tEj are all 0. This

implies that if v is a ribbon element, then bj = 0 for all j = 0, 1, 2, 3 since a0 = 1 by the

condition ε(v) = 1. Under this condition, we have

(2.6) (R21R)∆(v) = v ⊗ v ⇐⇒ a2i+βa2j+α = a2(iα+jβ)a2i+2j+α+β for all i, j, α, β.

By substituting i = 0, j = 1, α = 0, β = 1 to the equation (2.6), we have a2 = a2 =

(−1)
n
2 , and by substituting i = 0, j = 0, α = 1, β = 1 to the same equation (2.6), we have

a2 = a2
1. Furthermore, from the condition S(v) = v, the equation a1 = a3 is obtained.

Thus, any ribbon element v can be expressed as v = E0 + a2E2 ± a(E1 + E3). By writing

it as a linear combination of {si}, we have the form in the theorem. Conversely, it is easy

to check that the above v is a ribbon element of (C[D4,n], R̃a,µ) under the assumption

a2 = (−1)
n
2 . (Note that u = 1

2(1 + s2) + a
2 (1 − s2).) ¤

3. An application

By comparing the universal R-matrices of the dihedral group Hopf algebra C[D8] and

the quaternion group Hopf algebra C[Q8], that are determined in Theorem 1.2, we see

that the representation categories of C[D8] and C[Q8] are not isomorphic as abstract

tensor categories. To show this, we use the concept of the category-theoretic rank of a

quasitriangular Hopf algebra, which was introduced by Majid [5].

Let (A,R) be a quasitriangular Hopf algebra, and u be the Drinfel’d element of (A,R).

The trace of the left action of u on A is called the rank of (A,R), and it is denoted by

rank(A, R).

Example 3.1. Let n be an even integer. Then the rank of (C[D4,n], Rd) is as follows:

d 0 1 2 3

rank(C[D4,n], Rd) 8 4(1 −
√
−1) 0 4(1 +

√
−1)

In the case when n = 2, 4, for µ = 0, 1 the rank of (C[D4,n], R̃a,µ) is as follows:
11



n 4 2

(a, µ) (1, µ) (−1, µ) (
√
−1, µ) (−

√
−1, µ)

rank(C[D4,n], R̃a,µ) 8 0 4(1 +
√
−1) 4(1 −

√
−1)

In general, if two representation categories of Hopf algebras A and B are tensor equiv-

alent, then there exists a bijection between the sets of the universal R-matrices A and B

such that it preserves representation-theoretic ranks. The above example shows that the

universal R-matrices of C[D8] and C[Q8] are distinguished as (multi-)sets. This means

that the two representation categories of C[D8] and C[Q8] are not equivalent as abstract

tensor categories.

Acknowledgment. The author would like to thanks Professor Noriaki Kawanaka for

helpful advice.

References

[1] E. Abe, Hopf algebras, Cambridge University Press, Cambridge, 1980 (original Japanese ver-
sion published by Iwanami Shoten, Tokyo, 1977).

[2] C. W. Curtis and I. Reiner, Methods of representation theory volume 1, John Wiley & Sons,
1981.

[3] V. G. Drinfel’d, Quantum groups, in “Proceedings of the International Congress of Mathe-
matics, Berkeley, CA., 1987” p.798—820.

[4] V. G. Drinfel’d, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990) p.321—
342.

[5] S. Majid, Representation-theoretic rank and double Hopf algebras, Comm. Alg. 18 (1990)
p.3705—3712.

[6] H. Murakami, T. Ohtsuki and M. Okada, Invariants of three manifolds derived from linking
matrices of framed links, Osaka J. Math. 29 (1992) p.545—572.

[7] D. E. Radford, On the antipode of a quasitriangular Hopf algebra, J. of Alg. 151 (1992)
p.1—11.

[8] D. E. Radford, On Kauffman’s knot invariants arising from finite-dimensional Hopf algebras,
in “Advances in Hopf algebras” (Lecture Notes in Pure and Applied Mathematics 158), edited
by J. Bergen and S. Montgomery, Marcel Dekker, 1994, p.205—266.

[9] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quan-
tum groups, Comm. Math. Phys. 127 (1990) p.1—26.

[10] N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and
quantum groups, Invent. Math. 103 (1991) p.547—597.

Note added after published.

• In the original Japanese version, there are mistakes in the statement of Theorem

4, which corresponds to Theorem 1.2 in this note, and its proof. The incorrect part

in Theorem 4 is the statement on the ribbon elements of (C[D4,n], R̃a,µ) in the case of

a2 = −1. In this note, this is corrected.

• For integers m ≥ 3, n ≥ 1 and q (1 ≤ q ≤ m − 1), let us consider the finite group

Dm,n,q = 〈s, t | sm = 1, t2 = sn, t−1st = sq〉.
12



This group can be regarded as a generalization of Dm,n. In particular, Dm,m,1 (m ≥ 3) is

the direct product of the cyclic groups of order m and order 2, Dm,m,m−1 is the dihedral

group D2m of order 2m:

D2m = 〈s, t | sm = 1, t2 = 1, t−1st = s−1〉,

D2n,n,2n−1 (n ≥ 2) is the generalized quaternion group Q4n of order 4n:

Q4n = 〈s, t | s2n = 1, t2 = sn, t−1st = s−1〉,

D4p,4p,2p−1 (p ≥ 3) is the semi-dihedral group SD8p of order 8p:

SD8p = 〈s, t | s4p = 1, t2 = 1, t−1st = s2p−1〉,

and D4p,4p,2p+1(p ≥ 3) is the meta-abelian group SD8p of order 8p:

SA8p := 〈s, t | s4p = 1, t2 = 1, t−1st = s2p+1〉.

By the same method of the proof of Theorem 1.2, one can determine the universal

R-matrices of the group Hopf algebras for such a group.

If the order of the group Dm,n,q is 2m, then the subgroup of Dm,n,q generated by s is

a cyclic group of order m, and hence it can be identified with Zm.

Suppose that m, q satisfy the condition “for each k ∈ {0, 1, · · · ,m − 1} there exists a

unique j ∈ {0, 1, · · · ,m − 1} such that qj ≡ k (mod m)”. We write the integer j by

σ(k):

(A.1) qσ(k) ≡ k (mod m).

If the equations

(A.2) σ(i)σ(k) = ikq for all i, k ∈ {0, 1, · · · ,m − 1}

hold, then Rd (d = 0, 1, · · · ,m − 1) satisfies ∆cop(t) · Rd = Rd · ∆(t), and hence it is

a universal R-matrix of C[Dm,n,q]. If q = m − 1, or if m = n = 4p and q = 2p ± 1

(where p ≥ 3), then the condition (A.2) is satisfied. Thus, Rd is a universal R-matrix of

C[Dm,n,q].

Theorem. (i) For the group Dm,n,m−1 (m ≥ 3, n ≥ 1), if there is another universal

R-matrix of C[Dm,n,m−1] except for Rd (d = 0, 1, · · · , m − 1), then m = 4 and n is even.

In this case, there are exactly 4 such universal R-matrices, and they are given by

R̃a,µ =
1
4

∑
α,β,i,j=0,1

aαβ(−1)αβµ+jα+iβtαs2i+αµ ⊗ tβs2j+βµ,

where a2 = (−1)
n
2 and µ = 0, 1.

(ii) For the group D4p,4p,2p−1(p ≥ 3), there are exactly 4p universal R-matrices of

C[D4p,4p,2p−1] except for Rd (d = 0, 1, · · · ,m − 1), and they are given by

R̃c =
1
4

∑
α,β,γ,δ=0,1

aαβ(−1)βγ+αδζ−2cαβtαscα+2pγ ⊗ tβscβ+2pδ,
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where c = 0, 1, · · · , 2p − 1, and ζ is a primitive 4p-th root of unity, and a2 = (−1)cζ4c.

(iii) For the group D4p,4p,2p+1 (p ≥ 3), there are exactly 4p universal R-matrices of

C[D4p,4p,2p−1] except for Rd (d = 0, 1, · · · ,m − 1), and they are given by

R̃c =
1

16p2

∑
α,β=0,1

i,j=0,1,··· ,4p−1

aαβζjα+iβ
∑

k,l=1,··· ,2p

ζ−2(ki+lj)+2c(2kl−kα−lβ)tαsi ⊗ tβsj ,

where c = 0, 1, · · · , 2p − 1, and ζ is a primitive 4p-th root of unity, and a2 = (−1)cζ2c.

The above results were showed in the article “二面体群の普遍Ｒ行列と結び目の不変
量 (Universal R-matrices of dihedral groups and knot invariants)”, in Japanese, which

published in the proceedings of the 15th symposium on Algebraic Combinatorics, held

in Kanazawa University in 1998, p.132–145. Note that the formula of R̃a,µ in the above

theorem is slightly different from that in Theorem 1.2. The difference arises from the

relation t−1st = s−1 in D4,n,3. (Compare it with the relation tst−1 = s−1 in D4,n.) In

deed, the universal R-matrix R̃a,µ in Theorem 1.2 corresponds to R̃−a,µ in the above

theorem by replacing t by t−1.
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