On the Turaev-Viro-Ocneanu invariant of 3 -manifolds derived from generalized E_{6}-subfactors

Michihisa Wakui*

This is a joint work with Nobuya Sato (Rikkyo University).
At the beginning of the 1990's, a $(2+1)$-dimensional unitary topological quantum field theory, in short, TQFT, was introduced by A. Ocneanu [10] by using a type II_{1} subfactor with finite index and finite depth as a generalization of the Turaev-Viro TQFT [12] which was derived from the quantum group $U_{q}(s l(2, \mathbb{C}))$ at certain roots of unity. We call such a TQFT a Turaev-Viro-Ocneanu TQFT.

When a topological invariant for manifolds is given, it is a fundamental problem to know whether the invariant is determined only by homotopy type of manifolds, or not. It has already known that the Witten-Reshetikhin-Turaev invariant distinguishes the lens spaces $L(7,1)$ and $L(7,2)$, that are orientation preserving homotopic but not homeomorphic. The same problem is open for Turaev-Viro-Ocneanu invariants from subfactors.

In our previous paper [11], we computed Turaev-Viro-Ocneanu invariants from several subfactors for basic 3-manifolds including lens spaces and Brieskorn 3-manifolds. As a result, we showed that $L(p, 1)$ and $L(p, 2)$ are distinguished by the Turaev-ViroOcneanu invariant from a generalized E_{6}-subfactor with the cyclic group $\mathbb{Z} / p \mathbb{Z}$ for $p=3,5$. From this fact, it is natural for us to expect that the lens spaces $L(7,1)$ and $L(7,2)$ are distinguished by a generalized E_{6}-subfactor with $\mathbb{Z} / 7 \mathbb{Z}$. However, at that time, it was not known that there is such a subfactor. Recently, by using sector theory, Izumi [7] found new subfactors including a generalized E_{6}-subfactor with $\mathbb{Z} / 7 \mathbb{Z}$. In this note, we report results of computation of Turaev-Viro-Ocneanu invariants from such subfactors for lens spaces $L(p, q)$ in the case where $p \leq 7$ is an odd integer.

For a complex number a, the symbol \bar{a} denotes the complex conjugate of a.

§1. Generalized \boldsymbol{E}_{6}-subfactors

Generalized E_{6}-subfactors [6] are new subfactors found by Izumi based on the theory of sectors. In this section, we prepare some terminologies from subfactor theory, and describe the definition of generalized E_{6}-subfactors.

Let \mathcal{M} be an infinite factor. We denote by $\operatorname{End}_{0}(\mathcal{M})$ the set of $*$-endomorphisms ρ such that the minimal index $[\mathcal{M}: \rho(\mathcal{M})]_{0}$ is finite. For $\rho, \eta \in \operatorname{End}_{0}(\mathcal{M})$ the intertwiner space $\operatorname{Hom}(\rho, \eta)$ is defined by

$$
\operatorname{Hom}(\rho, \eta)=\{T \in \mathcal{M} \mid T \rho(x)=\eta(x) T \text { for } x \in \mathcal{M}\}
$$

[^0]This is a vector space. If $\rho \in \operatorname{End}_{0}(\mathcal{M})$ is irreducible, namely $\operatorname{dim} \operatorname{Hom}(\rho, \rho)=1$, then for any $\eta \in \operatorname{End}_{0}(\mathcal{M})$ the intertwiner space $\operatorname{Hom}(\rho, \eta)$ is a Hilbert space with the inner product

$$
\left(T, T^{\prime}\right)=T^{*} T^{\prime} \in \operatorname{Hom}(\rho, \rho) \cong \mathbb{C} \text { for } T, T^{\prime} \in \operatorname{Hom}(\rho, \eta)
$$

Two $*$-endomorphisms $\rho, \eta \in \operatorname{End}_{0}(\mathcal{M})$ are unitary equivalent if there is an element $U \in \mathcal{M}$ such that $U \rho_{1}(x)=\rho_{2}(x) U$ for all $x \in \mathcal{M}$ and $U U^{*}=U^{*} U=1$. The unitary equivalence class $[\rho]$ is called a sector.

For $\rho \in \operatorname{End}_{0}(\mathcal{M})$ we set $d(\rho)=\sqrt{[\mathcal{M}: \rho(\mathcal{M})]_{0}}$, and call it the statistical dimension of ρ. It is known that for every $\rho \in \operatorname{End}_{0}(\mathcal{M})$ there is a $*$-endomorphism $\bar{\rho} \in \operatorname{End}_{0}(\mathcal{M})$ and a pair of intertwiners $R_{\rho} \in \operatorname{Hom}(\mathrm{id}, \bar{\rho} \rho), \bar{R}_{\rho} \in \operatorname{Hom}(\mathrm{id}, \rho \bar{\rho})$ such that

$$
\bar{R}_{\rho}^{*} \rho\left(R_{\rho}\right)=R_{\rho}^{*} \bar{\rho}\left(\bar{R}_{\rho}\right)=\frac{1}{d(\rho)}, R_{\rho}^{*} R_{\rho}=\bar{R}_{\rho}^{*} \bar{R}_{\rho}=1
$$

Such $\bar{\rho}$ is unique up to unitary equivalence. So we call it the conjugation of ρ.
The set of unitary equivalence classes on $\operatorname{End}_{0}(\mathcal{M})$ has a structure of $*$-semiring over \mathbb{C}, whose product is induced by composition of maps $\rho \eta=\rho \circ \eta$, and whose $*$-action is induced by taking the conjugation [5, 9].

A finite subset Δ of $\operatorname{End}_{0}(\mathcal{M})$ is called a finite irreducible system closed under sector operations if the following four conditions are satisfied [4].
(i) $\operatorname{id}_{\mathcal{M}} \in \Delta$.
(ii) For all $\rho, \eta \in \Delta, \operatorname{dim} \operatorname{Hom}(\rho, \eta)= \begin{cases}1 & \text { if } \rho=\eta, \\ 0 & \text { otherwise. }\end{cases}$
(iii) For every $\rho \in \Delta$ the conjugation $\bar{\rho}$ is also in Δ.
(iv) For $\rho, \eta, \zeta \in \Delta$ with $\operatorname{dim} \operatorname{Hom}(\zeta, \rho \eta) \neq 0$, there is an orthonormal basis $\left\{T_{i}\right\}$ in $\operatorname{Hom}(\zeta, \rho \eta)$ such that

$$
\begin{equation*}
\sum_{\zeta \in \Delta} \sum_{i} T_{i} T_{i}^{*}=1, \quad(\rho \eta)(x)=\sum_{\zeta \in \Delta} \sum_{i} T_{i} \zeta(x) T_{i}^{*} \quad \text { for all } x \in \mathcal{M} . \tag{*}
\end{equation*}
$$

The condition (iv) is equivalent to that there are non-negative integers $N_{\rho \eta}^{\zeta}$ such that

$$
[\rho][\eta]=\bigoplus_{\zeta \in \Delta} N_{\rho \eta}^{\zeta}[\zeta] .
$$

Izumi [6] introduced a new class of subfactors as generalizations of E_{6}-subfactors. They arise from finite irreducible systems closed under sector operations in the endomorphisms of Cuntz algebras. We describe his construction below.

Let G be a finite abelian group of order n with a non-degenerate symmetric pairing $\langle\rangle:, G \times G \longrightarrow \mathbb{T}$, where $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$. As an infinite factor \mathcal{M}, we adopt the Cuntz algebra $\mathcal{O}_{2 n}$, which is the simple C^{*}-algebra generated by $\left\{S_{g}, T_{h} \mid g, h \in G\right\}$ with relations $S_{g}^{*} S_{h}=T_{g}^{*} T_{h}=\delta_{g h} 1, S_{g}^{*} T_{h}=T_{g}^{*} S_{h}=0(g, h \in G)$ and $\sum_{g \in G} S_{g} S_{g}^{*}+$ $\sum_{g \in G} T_{g} T_{g}^{*}=1$. We consider two functions $a: G \longrightarrow \mathbb{T}, b: G \longrightarrow \mathbb{C}$ and an element $c \in \mathbb{T}$ satisfying the following conditions (A1) - (A7).
(A1) $a(0)=1, a(g)=a(-g), a(g+h)\langle g, h\rangle=a(g) a(h) \quad(g, h \in G)$
(A2) $a(g) b(-g)=\overline{b(g)} \quad(g, h \in G)$
(A3) $\frac{c \sqrt{n}}{d}+\sum_{g \in G} b(g)=0$
(A4) $\sum_{g \in G} b(g+h) \overline{b(g)}=\delta_{h, 0}-\frac{1}{d} \quad(h \in G)$
(A5) $c^{3} \hat{a}(0)=1$
(A6) $\hat{b}(g)=c \overline{b(g)} \quad(g \in G)$
(A7) $\sum_{g \in G} b(g+h) b(g+k) \overline{b(g)}=\overline{\langle h, k\rangle} b(h) b(k)-\frac{c}{d \sqrt{n}} \quad(h, k \in G)$
Here, $d=\frac{n+\sqrt{n^{2}+4 n}}{2}$, that is a solution of the equation $d^{2}=n d+n$, and \hat{a}, \hat{b} are Fourier transformations given by the formula

$$
\hat{f}(g)=\frac{1}{\sqrt{n}} \sum_{h \in G} \overline{\langle g, h\rangle} f(h) \quad(g \in G)
$$

for $f=a, b$. Then $*$-preserving endomorphisms $\alpha_{g}(g \in G)$ and ρ are defined by

$$
\begin{aligned}
\alpha_{g}\left(S_{h}\right)= & S_{g+h}, \quad \alpha_{g}\left(T_{h}\right)=\langle g, h\rangle T_{h} \quad(h \in G), \\
\rho\left(S_{g}\right)= & {\left[\frac{1}{d} \sum_{h \in G}\langle g, h\rangle S_{h}+\frac{1}{\sqrt{d}} \sum_{h \in G} a(h) T_{h-g} T_{-h}\right] U(g)^{*}, } \\
\rho\left(T_{g}\right)= & \frac{c}{\sqrt{n d}} \sum_{h, k \in G}\langle k, g\rangle \overline{\langle h, k\rangle} S_{h} T_{k}^{*}+\frac{\overline{a(g) c}}{\sqrt{n}} \sum_{h, k \in G}\langle h, g\rangle\langle h, k\rangle T_{h} S_{k} S_{k}^{*} \\
& +\sum_{h, k \in G} a(h) b(g+h)\langle k, g\rangle T_{h+k} T_{-h} T_{k}^{*},
\end{aligned}
$$

where

$$
U(g)=\sum_{h \in G}\langle g, h\rangle S_{h} S_{h}^{*}+\sum_{h \in G} T_{h-g} T_{h}^{*},
$$

which defines a unitary representation of G. It is easy to see that $\alpha_{0}=\mathrm{id}, \alpha_{g} \cdot \alpha_{h}=\alpha_{g+h}$, $\alpha_{g} \cdot \rho=\rho,\left(\rho \cdot \alpha_{g}\right)(x)=U(g) \rho(x) U(g)^{*}, \rho^{2}(x)=\sum_{h \in G} S_{h} \alpha_{h}(x) S_{h}^{*}+\sum_{h \in G} T_{h} \rho(x) T_{h}^{*}$ for all $g, h \in G, x \in \mathcal{O}_{2 n}$, and moreover, $\overline{\alpha_{g}}=\alpha_{-g}, \bar{\rho}=\rho, R_{\alpha_{g}}=\bar{R}_{\alpha_{g}}=1, R_{\rho}=\bar{R}_{\rho}=S_{0}$, and $d\left(\alpha_{g}\right)=1, d(\rho)=d$ for all $g \in G$. Thus the subset $\Delta_{G, a, b, c}:=\left\{\alpha_{g} \mid g \in G\right\} \cup\{\rho\} \subset$ $\operatorname{End}_{0}\left(\mathcal{O}_{2 n}\right)$ is a finite irreducible system closed under sector operations.

Let \mathcal{M} be the weak closure of $\mathcal{O}_{2 n}$ in the GNS representations considered in [3]. Then ρ can be extended to an endomorphism on \mathcal{M}, and a subfactor $\mathcal{N} \subset \mathcal{M}$ is obtained from the von Neumann algebra generated by $\rho(\mathcal{M})$ and $\{U(g)\}_{g \in G}$. This subfactor is called a generalized E_{6}-subfactor since in the case where $G=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ the subfactor $\mathcal{N} \subset \mathcal{M}$ arising from $\Delta_{G, a, b, c}$ is an E_{6}-subfactor. In addition to this example, Izumi gives several solutions of (A1) - (A7) in the case where G is a cyclic group of order $n \leq 7$ and the direct product $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}[6,7]$.

§2. The definition of Turaev-Viro-Ocneanu invariant for 3-manifolds

In this section, we review the definition of Turaev-Viro-Ocneanu invariant of 3manifolds in the setting of sectors $[1,10]$.

Let Δ be a finite irreducible system of $\operatorname{End}_{0}(\mathcal{M})$ closed under sector operations. For $\rho, \eta, \zeta \in \Delta$, we set $\mathcal{H}_{\rho \eta}^{\zeta}=\operatorname{Hom}(\zeta, \rho \eta)$, and fix an orthonormal basis $\mathcal{B}_{\rho \eta}^{\zeta}=\left\{T_{i}\right\}$ of $\mathcal{H}_{\rho \eta}^{\zeta}$ satisfying the condition $(*)$ in the previous section.

Let \mathcal{K} be a simplicial complex, and suppose that each 1 -simplex in \mathcal{K} is oriented so that a cycle does not appear in any 2 -simplex. A map

$$
\varphi:(\{\text { the 1-simplices in } \mathcal{K}\},\{\text { the 2-simplices in } \mathcal{K}\}) \longrightarrow\left(\Delta, \bigcup_{\rho, \eta, \zeta \in \Delta} \mathcal{B}_{\rho \eta}^{\zeta}\right)
$$

is called a color of \mathcal{K} if $\varphi\left(\left|v_{0} v_{1} v_{2}\right|\right)$ belongs to $\mathcal{B}_{\rho \eta}^{\zeta}$ for a 2 -simplex $\left|v_{0} v_{1} v_{2}\right| \in \mathcal{K}$, where $\varphi\left(\left\langle v_{0}, v_{1}\right\rangle\right)=\rho, \varphi\left(\left\langle v_{1}, v_{2}\right\rangle\right)=\eta, \varphi\left(\left\langle v_{0}, v_{2}\right\rangle\right)=\zeta$, and $\left\langle v_{i}, v_{j}\right\rangle$ denotes the oriented 1-simplex.

Let M be a compact oriented 3-manifold whose boundary is triangulated by a simplicial complex \mathcal{K}, supposed that each edge in \mathcal{K} is oriented so that a cycle does not appear in every triangle. Let \mathcal{T} be a triangulation of M satisfying with the same condition as \mathcal{K}, and that \mathcal{T} coincides with \mathcal{K} on the boundary ∂M. For a colored tetrahedron $\sigma=$

in \mathcal{T}, we define a complex number called a quantum $6 j$-symbol by

$$
\frac{1}{\sqrt{d(\rho) d(\eta)}} A^{*} B^{*} a(C) D \quad \in \quad \operatorname{Hom}(\zeta, \zeta) \cong \mathbb{C}
$$

We denote the above complex number or its complex conjugate by $W(\sigma ; \varphi)$ according to compatibility of orientations for M and σ. Here, the orientation for σ is given by the order $v_{0}<v_{1}<v_{2}<v_{3}$.

For a color ψ of \mathcal{K}, we set

$$
Z^{\Delta}(M ; \mathcal{T}, \psi)=\lambda^{-\sharp \mathcal{T}^{(0)}+\frac{\sharp \mathcal{K}^{(0)}}{2}} \sqrt{d(\psi)} \sum_{\substack{\varphi: \text { colors of }\left.\mathcal{T} \\ \varphi\right|_{\mathcal{K}}=\psi}} d\left(\left.\varphi\right|_{\mathcal{T}-\mathcal{K}}\right) \prod_{\sigma: \text { tetrahedra of } \mathcal{T}} W(\sigma ; \varphi),
$$

where $\lambda=\sum_{\rho \in \Delta} d(\rho)^{2}$, which is called the global index of Δ, and

$$
d(\psi)=\prod_{e: \text { edges of } \mathcal{K}} d(\psi(e)), \quad d\left(\left.\varphi\right|_{\mathcal{T}-\mathcal{K}}\right)=\prod_{e: \text { edges of } \mathcal{T}-\mathcal{K}} d(\varphi(e)) .
$$

By the Frobenius reciprocity of sectors established by Izumi [4], it can be shown that the complex number $Z^{\Delta}(M ; \mathcal{T}, \psi)$ does not depend on the choice of orientations for edges in \mathcal{T}. However, the pentagon identity does not hold in general [1, Chapter 12]. For Δ which pentagon identities hold for all $a, b, c, e, f, j, k, l \in \Delta$ and A, B, C, E, F, G, the complex number $Z^{\Delta}(M ; \mathcal{T}, \psi)$ becomes a topological invariant of M with a fixed
triangulation \mathcal{K} of ∂M and its color ψ. In this case, we write $Z^{\Delta}(M ; \psi)$ instead of $Z^{\Delta}(M ; \mathcal{T}, \psi)$, and refer to it as the Turaev-Viro-Ocneanu invariant of (M, ψ). In the case where $\partial M=\varnothing$, we denote the Turaev-Viro-Ocneanu invariant $Z^{\Delta}(M ; \psi)$ by $Z^{\Delta}(M)$ since there is no color of the boundary.

Since any finite irreducible system $\Delta_{G, a, b, c}$ introduced in the previous section satisfies the pentagon identities thanks to the conditions (A1) - (A7), we have a Turaev-ViroOcneanu invariant from $\Delta_{G, a, b, c}$.

§3. Tube algebras

The concept of the tube algebra, which plays a crucial role in the Turaev-ViroOcneanu TQFT, was first introduced by Ocneanu [10]. Here, we review the definition of Ocneanu's tube algebra (see also [8] for precisely definition).

Let \mathcal{M} be an infinite factor, and Δ a finite irreducible system of $\operatorname{End}_{0}(\mathcal{M})$ satisfying pentagon identities. We set

$$
\text { Tube } \Delta=\bigoplus_{\rho, \xi, \zeta, \eta \in \Delta} \mathcal{H}_{\rho \eta}^{\zeta} \otimes \mathcal{H}_{\eta \xi}^{\zeta}
$$

For $A_{1} \in \mathcal{H}_{\rho \eta}^{\zeta}, A_{2} \in \mathcal{H}_{\eta \xi}^{\zeta}$ we represent the element $A_{1} \otimes A_{2} \in \mathcal{H}_{\rho \eta}^{\zeta} \otimes \mathcal{H}_{\eta \xi}^{\zeta}$ by the

Then, Tube Δ is an algebra over \mathbb{C} whose product \star is given by

where $\delta_{\xi, \eta}$ is Kronecker's delta, and ψ is a color of the boundary of the triangulation of the solid torus $\mathbb{D}^{2} \times \mathbb{S}^{1}$ illustrated as in the figure below. (Here, the two shaded triangles in the right-hand side are identified.)

the outside is colored

by $C=\left(C_{1}, C_{2}, \rho, \zeta, c, r\right)$
Moreover, Tube Δ has a structure of C^{*}-algebra whose $*$-operation is defined by inversing the tube inside out. We call this C^{*}-algebra the tube algebra in the Turaev-Viro-Ocneanu TQFT Z^{Δ}. The algebra Tube Δ is semisimple since a finite-dimensional C^{*}-algebra over \mathbb{C} is semisimple.

Izumi [4] introduced the tube algebra in the setting of sectors, and showed that there is a faithful positive linear functional on Tube Δ. The functional, denoted by φ_{Δ}, is given by

We note that the right-hand side, actually, is a complex number since $A_{2} A_{1}^{*} \in$ $\operatorname{Hom}(\rho, \rho) \cong \mathbb{C}$.

Let $\left\{z_{i}\right\}_{i=0}^{m}$ be the set of the primitive idempotents of the center \mathcal{Z} (Tube Δ) of Tube Δ. Since $\mathcal{Z}($ Tube $\Delta)$ is a commutative semisimple algebra, $\left\{z_{i}\right\}_{i=0}^{m}$ is a basis of \mathcal{Z} (Tube Δ). It is easily proved that $\varphi\left(z_{i}\right)$ is a positive real number for each i. So, we set $d(i)=\sqrt{\lambda \varphi\left(z_{i}\right)}$, where $\lambda=\sum_{\rho \in \Delta} d(\rho)^{2}$.

Let $\operatorname{SL}(2, \mathbb{Z})$ be the group consisting of 2×2-matrices of integer coefficients with determinant 1. The group $\operatorname{SL}(2, \mathbb{Z})$ acts on the center \mathcal{Z} (Tube Δ) as follows [5].
for $S^{\prime}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, where $X=R_{\eta}^{*} \bar{\eta}\left(A_{2} A_{1}^{*} \rho\left(\bar{R}_{\eta}\right)\right) \in \operatorname{Hom}(\bar{\eta} \rho, \rho \bar{\eta})$, $Y=A_{1}^{*} \rho\left(A_{2}\right) \in \operatorname{Hom}(\rho p, p \rho)$. We remark that $B_{2}^{*} X B_{1} \in \operatorname{Hom}(q, q)=\mathbb{C}, C_{2}^{*} Y C_{1} \in$ $\operatorname{Hom}(r, r)=\mathbb{C}$. With respect to the basis $\left\{\frac{\sqrt{\lambda}}{d(i)} z_{i}\right\}_{i=0}^{m}$ of \mathcal{Z} (Tube Δ), we may write

$$
\begin{align*}
& S_{\Delta}^{\prime}\left(\frac{\sqrt{\lambda}}{d(i)} z_{i}\right)=\sum_{j=0}^{m} S_{j i} \frac{\sqrt{\lambda}}{d(j)} z_{j} \quad\left(S_{j i} \in \mathbb{C}\right), \tag{3.1}\\
& T_{\Delta}^{\prime}\left(\frac{\sqrt{\lambda}}{d(i)} z_{i}\right)=t_{i} \frac{\sqrt{\lambda}}{d(i)} z_{i} \quad\left(t_{i} \in \mathbb{C}\right), \tag{3.2}
\end{align*}
$$

since the linear map T_{Δ}^{\prime} is represented by a diagonal matrix [5].

§4. Formulas of Turaev-Viro-Ocneanu invariants for lens spaces

In this section, we explain a method to compute the Turaev-Viro-Ocneanu invariant derived from subfactors. Our method is based on the Dehn surgery formula in $(2+1)$ dimensional topological quantum field theory with Verlinde basis [8]. In what follows, we only consider finite irreducible systems Δ satisfying pentagon identities.

The Turaev-Viro-Ocneanu TQFT Z^{Δ} derived from Δ assigns each (triangulated) oriented closed surface Σ to a finite-dimensional vector space $Z^{\Delta}(\Sigma)$. In the case where Σ is the torus $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$, the vector space $Z^{\Delta}\left(\mathbb{T}^{2}\right)$ is defined as follows. We regard
\mathbb{T}^{2} as a topological space obtained by identifying with opposite sides of a square in a usual way, and consider the singular triangulation $\mathcal{K}=$
Let $V^{\Delta}\left(\mathbb{T}^{2}\right)$ denote the vector space freely spanned by the colors of \mathcal{K} over \mathbb{C}. The vector space $V^{\Delta}\left(\mathbb{T}^{2}\right)$ is identified with the subspace $\bigoplus_{\rho, a, p \in \Delta} \mathcal{H}_{\rho a}^{p} \otimes \mathcal{H}_{a \rho}^{p} \subset$ Tube Δ.

Let $\Phi: V^{\Delta}\left(\mathbb{T}^{2}\right) \longrightarrow V^{\Delta}\left(\mathbb{T}^{2}\right)$ denote the linear map defined by

$$
\Phi\left(\psi_{0}\right)=\sum_{\psi_{1}: \text { colors }} Z^{\Delta}\left(\mathbb{T}^{2} \times[0,1] ; \psi_{0} \sqcup \psi_{1}\right) \psi_{1}
$$

for all colors ψ_{0} of \mathcal{K}, where $Z^{\Delta}\left(\mathbb{T}^{2} \times[0,1] ; \psi_{0} \sqcup \psi_{1}\right)$ is the Turaev-Viro-Ocneanu invariant of $\mathbb{T}^{2} \times[0,1]$ whose boundary is colored by ψ_{t} on $\mathbb{T}^{2} \times\{t\}$ for $t=0,1$. Then, we set $Z^{\Delta}\left(\mathbb{T}^{2}\right)=\operatorname{Im} \Phi \subset V^{\Delta}\left(\mathbb{T}^{2}\right)$. By the method of construction of Turaev-Viro-Ocneanu invariants for 3 -manifolds with boundaries, we see that the mapping class group of \mathbb{T}^{2}, which is isomorphic to $\operatorname{SL}(2, \mathbb{Z})$, acts on the vector space $Z^{\Delta}\left(\mathbb{T}^{2}\right)$. This action is given by the following. Let S, T be the orientation preserving homeomorphisms on \mathbb{T}^{2} depicted as in the figure below.

Then, the lifts of S, T^{-1} with respect to the universal covering $\mathbb{R}^{2} \longrightarrow \mathbb{T}^{2}$ are given by $\tilde{S}(x, y)=$ $(y,-x), \tilde{T}^{-1}(x, y)=(x,-x+y)$, respectively. We observe that $\tilde{S}, \tilde{T}^{-1}$ are simplicial maps from \mathcal{K} to the singular triangulations $\mathcal{L}_{S}, \mathcal{L}_{T^{-1}}$ depicted as in the right figure, respectively.

For $f \in\left\{S, T^{-1}\right\}$, a linear map $f_{\sharp}: V^{\Delta}\left(\mathbb{T}^{2}\right) \longrightarrow V^{\Delta}\left(\mathbb{T}^{2}\right)$ is defined by

$$
f_{\sharp}\left(\psi_{0}\right)=\sum_{\psi_{1}: \text { colors }} Z^{\Delta}\left(\mathbb{T}^{2} \times[0,1] ; f \psi_{0} \sqcup \psi_{1}\right) \psi_{1}
$$

for all colors ψ_{0} of \mathcal{K}, where $f \psi_{0}$ is the color of \mathcal{L}_{f} determined by ψ_{0} and f, and $Z^{\Delta}\left(\mathbb{T}^{2} \times[0,1] ; f \psi_{0} \sqcup \psi_{1}\right)$ is the Turaev-Viro-Ocneanu invariant of $\mathbb{T}^{2} \times[0,1]$ whose boundary is colored by $f \psi_{0}$ and ψ_{1} on $\mathbb{T}^{2} \times\{0\}$ and $\mathbb{T}^{2} \times\{1\}$, respectively. This linear map f_{\sharp} induces a linear isomorphism $Z^{\Delta}(f): Z^{\Delta}\left(\mathbb{T}^{2}\right) \longrightarrow Z^{\Delta}\left(\mathbb{T}^{2}\right)$, and the map $f \longmapsto Z^{\Delta}(f)$ gives a representation of $\mathrm{SL}(2, \mathbb{Z})$ on the space $Z^{\Delta}\left(\mathbb{T}^{2}\right)$.

Let us consider a conjugate-linear map $\phi: V^{\Delta}\left(\mathbb{T}^{2}\right) \longrightarrow \mathcal{Z}$ (Tube Δ) defined by
for all $a, \rho, p \in \Delta, A_{1} \in \mathcal{B}_{\rho a}^{p}, A_{2} \in \mathcal{B}_{a \rho}^{p}$. This map ϕ induces a conjugate-linear isomorphism $Z^{\Delta}\left(\mathbb{T}^{2}\right) \longrightarrow \mathcal{Z}($ Tube $\Delta)$ [11]. We set

$$
v_{i}=\frac{\lambda}{d(i)} Z^{\Delta}(S)\left(\phi^{-1}\left(z_{i}\right)\right) \quad(i=0,1, \cdots, m)
$$

Combining results in [8] and [11], then we have :

Theorem(Kawahigashi-Sato-W.[8], Sato-W.[11]). The basis $\left\{v_{i}\right\}_{i=0}^{m}$ of $Z^{\Delta}\left(\mathbb{T}^{2}\right)$ is a Verlinde basis associated with the Turaev-Viro-Ocneanu TQFT Z^{Δ}, and

$$
\left(Z^{\Delta}(T)\right)\left(v_{j}\right)=\overline{t_{j}} v_{i}, \quad\left(Z^{\Delta}(S)\right)\left(v_{j}\right)=\sum_{i=0}^{m} \overline{S_{j i}} v_{i} \quad(j=0,1, \cdots, m)
$$

where t_{j} and $S_{j i}$ are complex numbers defined in (3.1) and (3.2).

We can choose as v_{0} in a Verlinde basis $\left\{v_{i}\right\}_{i=0}^{m}$ the element

$$
1=\sum_{\psi: \text { colors }} Z^{\Delta}\left(\mathbb{D}^{2} \times \mathbb{S}^{1} ; \psi\right) \psi \in Z^{\Delta}\left(\mathbb{T}^{2}\right),
$$

which is the identity element of the fusion algebra associated to Z^{Δ}.
For a pair (p, q) of coprime integers, the lens space $L(p, q)$ is obtained from two solid tori $\mathbb{D}^{2} \times \mathbb{S}^{1}$ by gluing their boundaries along a homeomorphism $f: \mathbb{T}^{2} \longrightarrow \mathbb{T}^{2}$ such as $H_{1}(f)([\beta])=p[\alpha]+q[\beta]$, where $H_{1}(f)$ is the induced homomorphism from the 1-dimensional homology group $H_{1}\left(\mathbb{T}^{2}\right)$ to itself, and (β, α) is a standard meridianlongitude system.

Then, we have $Z^{\Delta}(L(p, q))=\left\langle f_{*}(1), 1\right\rangle$, where the bracket is a bilinear from on $Z^{\Delta}\left(\mathbb{T}^{2}\right)$ defined by $\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}$. If $q=1$, then we have $\overline{Z^{\Delta}(L(p, 1))}=\sum_{i=0}^{m} t_{i}^{p} S_{i 0}^{2}$ by taking $f=S \circ T^{p} \circ S$, and if $p \equiv-1(\bmod q)$, then we have $\overline{Z^{\Delta}(L(p, q))}=$ $\sum_{i, j=0}^{m} t_{i}^{\frac{p+1}{q}} t_{j}^{q} S_{i 0} S_{j 0} S_{i j}$ by taking $f=S \circ T^{\frac{p+1}{q}} \circ S \circ T^{q} \circ S$. Right-hand sides of these formulas are rewritten by using φ_{Δ} as follows.

Proposition. We set $\boldsymbol{t}^{\prime}=\sum_{i=0}^{m} t_{i} z_{i} \in \mathcal{Z}($ Tube $\Delta)$. Then, we have
(1) $\overline{Z^{\Delta}(L(p, 1))}=\frac{1}{\lambda} \varphi_{\Delta}\left(\boldsymbol{t}^{\prime p}\right)$.
(2) If $p \equiv-1(\bmod q)$, then $\overline{Z^{\Delta}(L(p, q))}=\frac{1}{\lambda} \varphi_{\Delta}\left(\boldsymbol{t}^{\frac{p+1}{q}} S_{\Delta}^{\prime}\left(\boldsymbol{t}^{\prime q}\right)\right)$.

In particular, we have formulas for $\overline{Z^{\Delta}(L(p, 2))}$ and $\overline{Z^{\Delta}(L(7,4))}$.

The formula of Part (1) in Proposition has already appeared in [6].
Applying the above formulas in case of $\Delta=\Delta_{G, a, b, c}$ defined in Section 1, and
 $(q=1,2)$ and $Z^{\Delta_{G, a, b, c}}(L(7,4))$ in terms of initial data of $\Delta_{G, a, b, c}$. For example, $Z^{\Delta_{G, a, b, c}}(L(7,4))$ can be computed by

$$
\begin{aligned}
Z^{\Delta_{G, a, b, c}(L(7,4))}= & \frac{1}{\lambda}\left\{n_{7}+\frac{c^{2}}{d} \sum_{g, k \in G} a(k)^{2} a(g)^{4} a(g+k)\right. \\
& +\sum_{g, h \in G} a(g) \overline{b(g+h)\langle h, g-h\rangle} \sum_{k \in G} \overline{b(k-2 g+h)\langle k-h, k\rangle} \\
& +c^{2} \sum_{k, l \in G} \overline{a(k) b(l-k)} \sum_{g \in G} a(g)^{5} \overline{b(2 k-g+l)\langle l+k-g, l\rangle} \\
& +d \sum_{g, k \in G} a(g)^{6} \overline{a(k-g)} \sum_{l \in G} \overline{b(l-2 k) b(k-g+l)}\langle l, g+k-l\rangle \\
& \left.\times \sum_{h \in G} b(h) b(3 g+h-l)\right\} .
\end{aligned}
$$

Here, $d=\frac{n+\sqrt{n^{2}+4 n}}{2}, \lambda=n+d^{2}, n_{7}=\sharp\{g \in G \mid 7 g=0\}$.
Recently, Izumi [7] gave new several solutions for the system of equations (A1) - (A7). Let us denote new finite irreducible systems from these solutions by $\Delta_{5, \varepsilon_{1}, \varepsilon_{2}}\left(\varepsilon_{1}, \varepsilon_{2}= \pm 1\right), \Delta_{6, \varepsilon}(\varepsilon=0,1), \Delta_{7}$. They are given by the following.

- $\Delta_{5, \varepsilon_{1}, \varepsilon_{2}}=\Delta_{G, a, b, c}\left(\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}\right):$

$$
\begin{aligned}
& G=\mathbb{Z} / 5 \mathbb{Z}, \zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{5}\right),\langle g, h\rangle=\zeta^{2 g h}, a(g)=\zeta^{-g^{2}}, \\
& b(0)=-\frac{1}{d}, b(1)=\frac{\zeta^{3} \eta_{1}}{\sqrt{5}}, b(2)=\frac{\zeta^{2} \eta_{2}}{\sqrt{5}}, c=\frac{-1-\varepsilon_{1} \varepsilon_{2} \sqrt{-3}}{2}, \\
& \eta_{j}=\frac{-1-\varepsilon_{1} \varepsilon_{2} \sqrt{15-6 \sqrt{5}}+\varepsilon_{j} i \sqrt{6 \sqrt{5}+(-1)^{j} \varepsilon_{1} \varepsilon_{2} 2 \sqrt{15-6 \sqrt{5}}}}{4} \quad(j=1,2)
\end{aligned}
$$

- $\Delta_{6, \varepsilon}=\Delta_{G, a, b, c}(\varepsilon \in\{0,1\})$:

$$
\begin{aligned}
& G=\mathbb{Z} / 6 \mathbb{Z}, \zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{24}\right),\langle g, h\rangle=\zeta^{4 g h}, a(g)=(-1)^{g \varepsilon} \zeta^{-2 g^{2}}, \\
& b(0)=-\frac{1}{d}, b(1)=\frac{(-\sqrt{-1})^{\varepsilon} \zeta \eta_{1}}{\sqrt{6}}, b(2)=\frac{\zeta^{4} \eta_{2}}{\sqrt{6}}, b(3)=\frac{(-\sqrt{-1})^{\varepsilon} \zeta^{-3}}{\sqrt{6}}, c=(-\sqrt{-1})^{\varepsilon} \zeta, \\
& \eta_{1}=\frac{2-(-1)^{\varepsilon} \sqrt{3}-\sqrt{15}}{4}+i \frac{\sqrt{(-1)^{\varepsilon} 2 \sqrt{3}+2 \sqrt{15}-3-(-1)^{\varepsilon} 3 \sqrt{5}}}{2 \sqrt{2}}, \\
& \eta_{2}=\frac{(-1)^{\varepsilon} 3+\sqrt{3}+\sqrt{5}-(-1)^{\varepsilon} \sqrt{15}}{4 \sqrt{2}}-i \frac{\sqrt{\sqrt{15}+(-1)^{\varepsilon} \sqrt{3}}}{2 \sqrt{2}}
\end{aligned}
$$

- $\Delta_{7}=\Delta_{G, a, b, c}$:
$G=\mathbb{Z} / 7 \mathbb{Z}, \zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{7}\right),\langle g, h\rangle=\zeta^{g h}, a(g)=\zeta^{3 g^{2}}$,

$$
\begin{aligned}
b(0) & =-\frac{1}{d}, b(1)=\frac{\zeta^{2} \eta_{1}}{\sqrt{7}}, b(2)=\frac{\zeta \eta_{2}}{\sqrt{7}}, b(3)=\frac{\zeta^{4} \eta_{3}}{\sqrt{7}}, c=-\sqrt{-1} \\
\eta_{1} & =\frac{-\sqrt{7}\left(\zeta+\zeta^{-1}\right)^{2}-\sqrt{11}\left(\zeta-\zeta^{-1}\right)^{2}+\left(\zeta^{2}-\zeta^{-2}\right) \sqrt{2 \sqrt{77}-14}}{4\left(\zeta-\zeta^{-1}\right)\left(\zeta^{4}-\zeta^{-4}\right)} \\
\eta_{2} & =\frac{-\sqrt{7}\left(\zeta^{4}+\zeta^{-4}\right)^{2}-\sqrt{11}\left(\zeta^{4}-\zeta^{-4}\right)^{2}+(\zeta-\zeta) \sqrt{2 \sqrt{77}-14}}{4\left(\zeta^{2}-\zeta^{-2}\right)\left(\zeta^{4}-\zeta^{-4}\right)} \\
\eta_{3} & =\frac{-\sqrt{7}\left(\zeta^{2}+\zeta^{-2}\right)^{2}-\sqrt{11}\left(\zeta^{2}-\zeta^{-2}\right)^{2}+\left(\zeta^{4}-\zeta^{-4}\right) \sqrt{2 \sqrt{77}-14}}{4\left(\zeta-\zeta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)}
\end{aligned}
$$

By partially using the Maple software Release 5, we computed Turaev-Viro-Ocneanu invariants of lens spaces $L(p, q)$ for $p \leq 7$ in each case of new finite irreducible systems defined above. The following table is one of the results of our computations.

	$\Delta_{5, \varepsilon_{1}, \varepsilon_{2}}$	$\Delta_{6, \varepsilon}$	Δ_{7}
$L(3,1)$	$\frac{3+\sqrt{-1} \varepsilon_{1} \varepsilon_{2} \sqrt{15}}{30}$	$\frac{5-\sqrt{-1} \sqrt{5}}{20}$	$\frac{11+\sqrt{77}}{154}$
$L(5,1)$	$\frac{2}{3}$	$\frac{1-(-1)^{\varepsilon} \sqrt{3}}{12}$	$\frac{11+\sqrt{77}}{154}$
$L(5,2)$	$\frac{1}{3}$	$\frac{1+(-1)^{\varepsilon} \sqrt{3}}{12}$	$\frac{11+\sqrt{77}}{154}$
$L(7, q), q=1,2$	$\frac{3+\sqrt{5}}{30}$	$\frac{5-\sqrt{15}}{60}$	$\frac{11-\sqrt{-1} \sqrt{11}}{22}$

We remark that $Z^{\Delta}(L(p, q))=\overline{Z^{\Delta}(L(p, p-q))}$ since $L(p, p-q)$ is homeomorphic to $L(p, q)$ with opposite orientation, and $Z^{\Delta}(L(7,4))=Z^{\Delta}(L(7,2))$ since $L(7,4)$ is orientation preserving homeomorphic to $L(7,2)$. As a result, we see that the Turaev-Viro-Ocneanu invariant derived from the generalized E_{6}-subfactor with group symmetry $G=\mathbb{Z} / 7 \mathbb{Z}$ dose not distinguish the lens spaces $L(7,1)$ and $L(7,2)(\cong L(7,4))$.

References

[1] D.E.Evans and Y.Kawahigashi, Quantum symmetries on operator algebras, Oxford University Press (1998)
[2] M. Izumi, Applications of fusion rules to classification of subfactors, Publ. RIMS 27 (1991) p.953-994.
[3] M. Izumi, Subalgebras of finite C^{*}-algebras with finite Watatani indices, I: Cuntz algebras, Commun. Math.Phys. 155 (1993) p.157-182.
[4] M. Izumi, Subalgebras of finite C^{*}-algebras with finite Watatani indices, II: Cuntz-Krieger algebras, Duke Math. J. 91 (1998) 409-461.
[5] M. Izumi, The structures of sectors associated with the Longo-Rehren inclusions I. General theory, Commun. Math.Phys. 213 (2000) p.127—179.
[6] M. Izumi, The structures of sectors associated with the Longo-Rehren inclusions II. Examples, Review in Math.Phys. 13 (2001) p.603-674.
[7] M. Izumi, unpublished manuscript.
[8] Y. Kawahigashi, N. Sato and M. Wakui, $(2+1)$-dimensional topological quantum field theory from subfactors and Dehn surgery formula for 3-manifold invariants, Adv. in Math. 195 (2005) p.165-204.
[9] R. Longo, Index of subfactors and statistics of quantum fields II. Correspondences, braid group statistics and Jones polynomial, Commun. in Math. Phys. 130 (1990) p.285-309.
[10] A. Ocneanu, Chirality for operator algebras, in "Subfactors", ed. by H. Araki, et al., World Scientific, 1994, p.39-63.
[11] N. Sato and M. Wakui, Computations of Turaev-Viro-Ocneanu invariants of 3-manifolds from subfactors, JKTR 12 (2003) p.543-574.
[12] V.G.Turaev and O.Ya.Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992) p.865-902.

Department of Mathematics, Faculty of Engineering Science
Kansai University
3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan

[^0]: *This research is partially supported by Grant-in-Aid for Scientific Research (No. 19540025), JSPS.

