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At the beginning of the 1990’s, a (2 + 1)-dimensional unitary topological quantum
field theory, in short, TQFT, was introduced by A. Ocneanu [10] by using a type II;
subfactor with finite index and finite depth as a generalization of the Turaev-Viro
TQFT [12] which was derived from the quantum group U,(sl(2,C)) at certain roots of
unity. We call such a TQFT a Turaev-Viro-Ocneanu TQFT.

When a topological invariant for manifolds is given, it is a fundamental problem
to know whether the invariant is determined only by homotopy type of manifolds, or
not. It has already known that the Witten-Reshetikhin-Turaev invariant distinguishes
the lens spaces L(7,1) and L(7,2), that are orientation preserving homotopic but not
homeomorphic. The same problem is open for Turaev-Viro-Ocneanu invariants from
subfactors.

In our previous paper [11], we computed Turaev-Viro-Ocneanu invariants from sev-
eral subfactors for basic 3-manifolds including lens spaces and Brieskorn 3-manifolds.
As a result, we showed that L(p,1) and L(p,2) are distinguished by the Turaev-Viro-
Ocneanu invariant from a generalized Fg-subfactor with the cyclic group Z/pZ for
p = 3,5. From this fact, it is natural for us to expect that the lens spaces L(7,1) and
L(7,2) are distinguished by a generalized Eg-subfactor with Z/7Z. However, at that
time, it was not known that there is such a subfactor. Recently, by using sector theory,
Izumi [7] found new subfactors including a generalized Eg-subfactor with Z/77Z. In this
note, we report results of computation of Turaev-Viro-Ocneanu invariants from such
subfactors for lens spaces L(p, q) in the case where p < 7 is an odd integer.

For a complex number a, the symbol a denotes the complex conjugate of a.

81. Generalized Eg-subfactors

Generalized Eg-subfactors [6] are new subfactors found by Izumi based on the theory
of sectors. In this section, we prepare some terminologies from subfactor theory, and
describe the definition of generalized Eg-subfactors.

Let M be an infinite factor. We denote by Endy(M) the set of x-endomorphisms p
such that the minimal index [M : p(M)]o is finite. For p,n € Endy(M) the intertwiner
space Hom(p, n) is defined by

Hom(p,n) ={ T € M | Tp(x) =n(x)T for v € M }.
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This is a vector space. If p € Endg(M) is irreducible, namely dim Hom(p, p) = 1, then
for any n € Endy(M) the intertwiner space Hom(p, n) is a Hilbert space with the inner
product

(T, T") =T*T" € Hom(p, p) = C for T,T" € Hom(p,n).

Two *-endomorphisms p,n € Endy(M) are unitary equivalent if there is an element
U € M such that Up,(z) = pa(x)U for all x € M and UU* = U*U = 1. The unitary
equivalence class [p] is called a sector.

For p € Endg(M) we set d(p) = \/[M : p(M)]o, and call it the statistical dimension
of p. It is known that for every p € Endy(M) there is a x-endomorphism p € Endy(M)
and a pair of intertwiners R, € Hom(id, pp), R, € Hom(id, pp) such that

—* e 1 % %=
Rop(By) = Bp(Ry) = Gos. BBy = TR, = 1

Such p is unique up to unitary equivalence. So we call it the conjugation of p.

The set of unitary equivalence classes on Endy(M) has a structure of *-semiring over
C, whose product is induced by composition of maps pn = pon, and whose *-action is
induced by taking the conjugation [5, 9].

A finite subset A of Endy(M) is called a finite irreducible system closed under sector
operations if the following four conditions are satisfied [4].

(i) idpm € A
(ii) For all p,n € A, dim Hom(p,n) = {1 ifp= 7’
0 otherwise.
(iii) For every p € A the conjugation p is also in A.
(iv) For p,n,¢ € A with dim Hom(¢, pn) # 0, there is an orthonormal basis {7;} in
Hom((, pn) such that

(+) SN nrr =1 (o)) = Y. Ti(@)Ty forallz € M.

CeA i CeA i

The condition (iv) is equivalent to that there are non-negative integers N gn such that
oIl = @ N, [¢].
¢eA

Izumi [6] introduced a new class of subfactors as generalizations of Eg-subfactors.
They arise from finite irreducible systems closed under sector operations in the endo-
morphisms of Cuntz algebras. We describe his construction below.

Let G be a finite abelian group of order n with a non-degenerate symmetric pairing
(, ):GxG—T, where T={z¢€C||z|] =1}. As an infinite factor M, we adopt
the Cuntz algebra O,,, which is the simple C*-algebra generated by {S,, T}, | g, h € G}
with relations S}.S, = T;T), = dgnl, S;Th = T;S, = 0 (g,h € G) and deG SgS; +
> gec LyTy = 1. We consider two functions a : G — T, b: G — C and an element
¢ € T satisfying the following conditions (A1) — (A7).



a(0) =1, a(g) = a(—g), a(g + h)(g,h) = a(g)a(h)  (9,h € G)

sec g+ mb(g) = —5  (heG)

c
b(g) = cbg) (9€@)
(AT) Xgec blg + h)blg + k)b(g) = (h, k)b(R)b(K) — 7%= (h, k € G)
Here, d = @, that is a solution of the equation d> = nd + n, and d,IA) are Fourier

transformations given by the formula

f(9) \/—Z g, h (9€G)

heG@

for f = a,b. Then *-preserving endomorphisms a, (¢ € G) and p are defined by
ag(Sp) = Sgrn,  ay(Th) = (9, T, (he G),

p(Sg)Z[éZ hySh+ —= Z h)Th—gT-1|U(9)",

heG heG
a(g)e

oT k, ) Y SuT + h. g)(h, )Ty S,S?
(Ty) = \/—th h \/ﬁtheG< ) (R, k)T SkSy,

+ Y a(h)b(g + W)k, ) ThrT-nTY,
hokeG

where

Ulg) =D (9. mSuSi+ D Th-yTi
heG heG
which defines a unitary representation of G. It is easy to see that oy = id, ag-o, = agip,

ag-p=p, (p-ag)(@) =Ulg)p(@)U(9)", p*(x) = Y heq Snan()Sy + > heq Tnp(x) T for
all g,h € G, x € Oy,, and moreover, a; = a_y, p=p, Ry, = Ro, =1, R, = R, = S,
and d(oy) =1, d(p) = d for all g € G. Thus the subset Ag 5. = {ay | g € G}U{p} C
Endy(Os,,) is a finite irreducible system closed under sector operations.

Let M be the weak closure of Oy, in the GNS representations considered in [3]. Then
p can be extended to an endomorphism on M, and a subfactor N' C M is obtained
from the von Neumann algebra generated by p(M) and {U(g)}see. This subfactor
is called a generalized Eg-subfactor since in the case where G = Z/2Z = {0,1} the
subfactor N C M arising from Ag .. is an Eg-subfactor. In addition to this example,
Izumi gives several solutions of (Al) — (A7) in the case where G is a cyclic group of
order n < 7 and the direct product Z/27Z x Z/2Z [6, 7|.

§2. The definition of Turaev-Viro-Ocneanu invariant for 3-manifolds
In this section, we review the definition of Turaev-Viro-Ocneanu invariant of 3-

manifolds in the setting of sectors [1, 10].



Let A be a finite irreducible system of Endy(M) closed under sector operations. For
p,1, ¢ € A, we set Hgn = Hom((, pn), and fix an orthonormal basis Bgn ={T;} of Hfm
satisfying the condition (x) in the previous section.

Let K be a simplicial complex, and suppose that each 1-simplex in K is oriented so
that a cycle does not appear in any 2-simplex. A map

¢ : ({the 1-simplices in K}, {the 2-simplices in £}) — <A, U Bén>
pmCEA
is called a color of KC if @(|vgv1vs|) belongs to BS, for a 2-simplex |vgvyvs| € K, where

o((vo, 1)) = p, p((v1,v2)) = 1, ©({vg,v2)) = ¢, and (v;,v;) denotes the oriented

1-simplex.
AN
¢

Let M be a compact oriented 3-manifold whose boundary is triangulated by a simpli-
cial complex IC, supposed that each edge in K is oriented so that a cycle does not appear
in every triangle. Let 7 be a triangulation of M satisfying with the same condition as
IC, and that 7 coincides with K on the boundary 0M. For a colored tetrahedron o =

in 7, we define a complex number called a quantum 6j-symbol by

1

d(p)d(n)
We denote the above complex number or its complex conjugate by W (e;¢) according

A*B*a(C)D € Hom((, () =C.

to compatibility of orientations for M and o. Here, the orientation for ¢ is given by
the order vy < v < vy < w3.

For a color ¥ of K, we set

ZAOMGT, ) = TSI Y delr) [ W),

@ : colors of T o : tetrahedra of 7°
ple=1
where A = > d(p)?, which is called the global index of A, and
pEA
dw)=[[ dw(e). delrx)= [  dele).
e : edges of £ e: edgesof 7T — K

By the Frobenius reciprocity of sectors established by Izumi [4], it can be shown that
the complex number Z2(M;7 ,v) does not depend on the choice of orientations for
edges in 7. However, the pentagon identity does not hold in general [1, Chapter 12].
For A which pentagon identities hold for all a,b,c,e, f,j,k,l € A and A, B,C, E, F,G,

the complex number Z2(M;7 %) becomes a topological invariant of M with a fixed
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triangulation K of OM and its color 1. In this case, we write Z2(M;1) instead of
ZA(M; T ,4), and refer to it as the Turaev-Viro-Ocneanu invariant of (M, ). In the
case where OM = &, we denote the Turaev-Viro-Ocneanu invariant Z2(M;) by
ZA (M) since there is no color of the boundary.

Since any finite irreducible system A 4. introduced in the previous section satisfies
the pentagon identities thanks to the conditions (A1) — (A7), we have a Turaev-Viro-

Ocneanu invariant from Ag 4.

§3. Tube algebras

The concept of the tube algebra, which plays a crucial role in the Turaev-Viro-
Ocneanu TQFT, was first introduced by Ocneanu [10]. Here, we review the definition
of Ocneanu’s tube algebra (see also [8] for precisely definition).

Let M be an infinite factor, and A a finite irreducible system of Endy(M) satisfying

pentagon identities. We set

Tube A=  HS, @ H;,

pE¢mEA
For A, € Hfm, Ay € Hgg we represent the element A; ® A, € Hgn ® Hgg by the
1) n
Ay
figure P A € It can be regarded as a tube 3
2
n
Then, Tube A is an algebra over C whose product  is given by
a b c
A e s B e = s s gamrste) o) O
Ag BQ d(p)d(C)d(g) c,r€A Ch€B, 02
) ‘ CQGBZ( )
b C

where ¢, is Kronecker’s delta, and 1) is a color of the boundary of the triangulation
of the solid torus D? x S! illustrated as in the figure below. (Here, the two shaded

triangles in the right-hand side are identified.)

C

el

/
/

112

the outside is colored
by C=(C1,C2,p,( c,7)
Moreover, Tube A has a structure of C*-algebra whose *-operation is defined by
inversing the tube inside out. We call this C*-algebra the tube algebra in the Turaev-
Viro-Ocneanu TQFT Z2. The algebra Tube A is semisimple since a finite-dimensional

C*-algebra over C is semisimple.



Izumi [4] introduced the tube algebra in the setting of sectors, and showed that there
is a faithful positive linear functional on Tube A. The functional, denoted by @a, is

given by n

oA (p 5) = d(£)%6,.¢0,,1aA2A5.

n
We note that the right-hand side, actually, is a complex number since A, A} €

Hom(p, p) = C.
Let {z;}*, be the set of the primitive idempotents of the center Z(Tube A) of

Tube A. Since Z(Tube A) is a commutative semisimple algebra, {z;}", is a basis

of Z(Tube A). It is easily proved that ¢(z;) is a positive real number for each i. So,

we set d(i) = \/Ap(2), where A =37 _\ d(p)*.
Let SL(2,Z) be the group consisting of 2 x 2-matrices of integer coefficients with
determinant 1. The group SL(2,7Z) acts on the center Z(Tube A) as follows [5].

N p
(q
S’ pp =d(p)Y_ > BiXB 7 Az
2‘ qEABl€Bg 2‘ 9
n BoeBY, P
/’7 "
T’A_1</) p) =Y > aya r p
| reA CieBs, Ce
n C2€B;, p

for S = <(1) —01) and T = ((1) }), where X = Rrij(A2A5p(Ry)) € Hom(ijp, pij),

Y = Aip(As) € Hom(pp,pp). We remark that B X B, € Hom(q,q) = C, C3YC) €
Hom(r,r) = C . With respect to the basis {%zi}to of Z(Tube A), we may write

i

(31) SIA (;{ZX)ZZ> = Zsjic;{»;\)zj (S]z S (C)a
3=0

since the linear map T} is represented by a diagonal matrix [5].

84. Formulas of Turaev-Viro-Ocneanu invariants for lens spaces

In this section, we explain a method to compute the Turaev-Viro-Ocneanu invariant
derived from subfactors. Our method is based on the Dehn surgery formula in (2 + 1)-
dimensional topological quantum field theory with Verlinde basis [8]. In what follows,
we only consider finite irreducible systems A satisfying pentagon identities.

The Turaev-Viro-Ocneanu TQFT Z2 derived from A assigns each (triangulated)
oriented closed surface ¥ to a finite-dimensional vector space Z2(X). In the case where
Y is the torus T? = S! x S!, the vector space Z*(T?) is defined as follows. We regard
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T? as a topological space obtained by identifying with opposite sides of a square in a

usual way, and consider the singular triangulation I = of T2.

Let V2(T?) denote the vector space freely spanned by the colors of K over C. The
vector space V2(T?) is identified with the subspace D, ..pen Hb, ® HE, C Tube A.
Let @ : VA(T?) — V2(T?) denote the linear map defined by

Do) = > Z(T*x [0,1);¢h Uehr) v

1 : colors

for all colors 1y of K, where Z2(T?x [0, 1]; ¥oLI3); ) is the Turaev-Viro-Ocneanu invariant
of T? x [0,1] whose boundary is colored by ; on T? x {t} for t = 0,1. Then, we set
ZA(T?) = Im® C VA(T?). By the method of construction of Turaev-Viro-Ocneanu
invariants for 3-manifolds with boundaries, we see that the mapping class group of
T?, which is isomorphic to SL(2,Z), acts on the vector space Z2(T?). This action is

given by the following. Let S, T be the orientation preserving homeomorphisms on T?

@i

Then, the lifts of S, T~! with respect to the uni-

versal covering R? — T? are given by S(z,y) =

depicted as in the figure below.

km

(y,—x), T (x,y) = (x,—x + y), respectively. We

observe that S, 7! are simplicial maps from K to

Z.
%
the singular triangulations Lg, Lr-1 depicted as in T Y \
the right figure, respectively. <

For f € {S,T71}, a linear map f; : V2(T?) — VA(T?) is defined by
fiwo) = > ZA(T* x [0,1]; feho Uth) ¢

W1 : colors

for all colors 1y of KC, where f1), is the color of L determined by v, and f, and
ZA(T? x [0,1]; f1ho U ¢y) is the Turaev-Viro-Ocneanu invariant of T2 x [0, 1] whose
boundary is colored by fiy and v; on T? x {0} and T? x {1}, respectively. This
linear map f; induces a linear isomorphism Z2(f) : Z2(T?) — Z2(T?), and the map
f —— Z2(f) gives a representation of SL(2,Z) on the space Z2(T?).

Let us consider a conjugate-linear map ¢ : VA(T?) — Z( Tube A) defined by
p

() -t 2 ZP

P
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for all a,p,p € A, Ay € Bb,, Ay € BY,. This map ¢ induces a conjugate-linear

pas
isomorphism Z2(T?) — Z(Tube A) [11]. We set
v= 2 ) (=01 m)

(i)

Combining results in [8] and [11], then we have :

Theorem(Kawahigashi-Sato-W.[8], Sato-W.[11]). The basis {v;}™, of Z*(T?) is
a Verlinde basis associated with the Turaev-Viro-Ocneanu TQFT Z*, and

(Z2T) () =Tvi,  (Z2S)) (W) =D Sjvi (j=0,1,--- ,m),
i=0
where t; and Sj; are complex numbers defined in (3.1) and (3.2).

We can choose as vy in a Verlinde basis {v; }1*, the element

1= Y Z8D*xShy)y € Z5(T?),

% @ colors

which is the identity element of the fusion algebra associated to Z2.

For a pair (p,q) of coprime integers, the lens space L(p,q) is obtained from two
solid tori D? x S' by gluing their boundaries along a homeomorphism f : T? — T?
such as Hi(f)([8]) = pla] + ¢q|F], where Hy(f) is the induced homomorphism from
the 1-dimensional homology group H;(T?) to itself, and (3, «) is a standard meridian-

longitude system.

L(p,q) = - Uy @

Then, we have Z2(L(p,q)) = (f.(1),1), where the bracket is a bilinear from on
Z2(T?) defined by (v;,v;) = &;. If ¢ = 1, then we have Z2(L(p,1)) = > 752
by taking f = SoT?0 S, and if p = —1 (mod ¢), then we have Z2(L(p,q)) =

ptl

S t-Tt;?SionoSij by taking f = S o T 0So0T0 8. Right-hand sides of these

formulas are rewritten by using ¢ as follows.
Proposition. We set t' = ) t;z; € Z(Tube A). Then, we have
i=0

(1) 75 1) = yoa(t”).
(2) Ifp=—1 (mod ), then. Z5(L(p ) = ("% Su(¢").
In particular, we have formulas for Z2(L(p,2)) and Z*(L(7,4)).



The formula of Part (1) in Proposition has already appeared in [6].

Applying the above formulas in case of A = Ag s defined in Section 1, and

C_ v
)
substituting ' = 3 d(¢) ¢ ¢, we have formulas to compute Z2G.at<(L(p,q))
CeA ¢
¢

(¢ = 1,2) and Z2cabe(L(7,4)) in terms of initial data of Aggap.. For example,
ZAGabe(L(7,4)) can be computed by

2

230 (LT) = o+ G 3 alkalg)ala + 4
+ ) alg ; ;+h )hyg =) > (k=29 + h)(k — h, k)
+ gc;:imz;a(g):z(a% —g+ 0 +k—g,l)
+d Ze a(g)a(k — g)gez b(l — 2k)b(k — g+ 1){l,g+ k —1)
g’kei > b(h)b(3g +l€: — )}
hec

Here,d:@, A=n+d* n;=t{ge G| Tg=0}.

Recently, Izumi [7] gave new several solutions for the system of equations (A1)
— (A7). Let us denote new finite irreducible systems from these solutions by

Aseier (61,60 ==£1), Ag. (6 =0,1), A7. They are given by the following.

® As.ico =AGape (e1,60 € {—1,1}) :
G =1Z/5Z, ¢ =exp(ZX1), (g,h) = (%", a(g) = (7,

b(0) = =4, b(1) = S, b(2) = S, 0 = e

7175162\/1576\/5+€ji\/6\/5+(71 Je1£924/15—6V5 -
i (7=12)

?

nj =
[ ] Aﬁg = AGabc (E c {0 1}) :

G =Z[6Z, ¢ = exp(*), (g, h) = (", a(g) = (=1)7°¢>,

b0) = —, b(1) = S, b(2) = B, bE) = S o= (VI

d’ V6 V6
_2(= 1>f VIS | V/(C1)22v342V15- 53— (-1)3V5
m= 22 )
_ (=D3HVBHVE(=1)VI5 \/ 15+
/)7 4[
L4 A? = AG,a,b,c :

G =1Z[TZ, ( = exp(ZL1), (g, h) = (", alg) = (37,
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b(0) = —1, b(1) =SB p(2) = =, p(3) = C e = —/—T,

VT VT VT
VT2 VIT(E -T2 (P -V 2VTT-14
= 1C-C =) )
VT2 VIT(C 2 (= OV 2V TT—14
2= AF=¢)(C—C) !
VT2 2 TT(CE ¢ 2) 2 (A= 2VTT—14
s = AC-C =)

By partially using the Maple software Release 5, we computed Turaev-Viro-Ocneanu

invariants of lens spaces L(p, q) for p < 7 in each case of new finite irreducible systems

de

to

fined above. The following table is one of the results of our computations.

As e e AV A,
sl el
L(5,1) 2 OV | /T
Lo . [BEEE|

L(7,q), ¢=1,2 35 VT | LoV

We remark that Z2(L(p,q)) = Z2(L(p,p — q)) since L(p,p — ¢q) is homeomorphic
L(p,q) with opposite orientation, and Z2(L(7,4)) = Z2(L(7,2)) since L(7,4) is

orientation preserving homeomorphic to L(7,2). As a result, we see that the Turaev-

Viro-Ocneanu invariant derived from the generalized Fg-subfactor with group symmetry

G

il
2
3
4
5
6

7
8

9

[10
[11

[12

= 7,/7Z dose not distinguish the lens spaces L(7,1) and L(7,2) (= L(7,4)).
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