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ABSTRACT

The synapses of real neural systems seem to have delays.
Therefore, it is worthwhile to analyze associative memory
models with delayed synapses. Thus, a sequential asso-
ciative memory model with delayed synapses is discussed,
where a discrete synchronous updating rule and a corre-
lation learning rule are employed. Its dynamic properties
are analyzed by the statistical neurodynamics. In this pa-
per, we first re-derive the Yanai-Kim theory, which involves
macrodynamical equations for the dynamics of the network
with serial delay elements. Since their theory needs a com-
putational complexity of O(L*t) to obtain the macroscopic
state at time step ¢ where L is the length of delay, it is in-
tractable to discuss the macroscopic properties for a large
L limit. Thus, we derive steady state equations using the
discrete Fourier transformation, where the computational
complexity does not formally depend on L. We show that
the storage capacity ac is in proportion to the delay length
L with a large L limit, and the proportion constant is 0.195,
i.e., ac = 0.195L. These results are supported by computer
simulations.

1. INTRODUCTION

Associative memory models of neural network can be mainly
classified into two types [1, 2, 3]. The first is the auto as-
sociative memory model where memory patterns are stored
as equilibrium states of the network. The second type is
the sequence processing model, which stores the sequence
of memory patterns.

As a learning algorithm for storing memory patterns,
the correlation learning algorithm based on Hebb’s rule
is well known. The storage capacity, that is, how many
memory patterns can be stably stored with respect to the
number of neurons, is the one of the most important prop-
erties of associative memory models. Hopfield [4] showed
that the storage capacity of the auto associative memory
model using correlation learning is about 0.15 by computer
simulation. On the other hand, many theoretical analy-
ses have been done on the correlation learning type asso-
ciative memory model[1]. As typical analytical methods,
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there are the replica method [5, 6, 7] and the SCSNA[8] for
the equilibrium state of the auto associative memory mod-
els. There is also the statistical neurodynamics [9] for han-
dling retrieval dynamics. By these theories, it became clear
that the storage capacity of the auto-associative memory
model is 0.138 and that of the sequence processing model is
0.269 [10, 11, 12]. Furthermore, it has become well-known
that the analysis of the dynamics for the auto-associative
model is more difficult than that for the sequence process-
ing model. However, Okada [13] succeeded in explaining
the dynamics of the retrieval process quantitatively by ex-
tending the statistical neurodynamics [9].

On the other hand, the synapses of real neural systems
seem to have delays. Therefore, it is very important to an-
alyze the associative memory model with delayed synapses.
Computer simulation is a powerful method for investigat-
ing the properties of the neural network. However, there
is a limit on the number of neurons. In particular, com-
puter simulation for a network that has large delay steps
is realistically impossible considering the required amount
of calculation and memory. Therefore, the theoretical and
analytical approach is indispensable to research on delayed
networks.

A neural network in which each neuron has delay ele-
ments [2, 14, 15] was analyzed by Yanai and Kim [14]. They
analyzed the delayed network using the statistical neurody-
namics [9, 10] and derived macrodynamical equations for
the dynamics. Their theory closely agrees with the results
of computer simulation.

In this paper, after defining the model, the Yanai-Kim
theory is re-derived by using the statistical neurodynamics
[16]. We show that their macrodynamical equations make
clear that the dynamics of the network and the phase tran-
sition points change with the initial conditions. The Yanai-
Kim theory needs a computational complexity of O(L*t) to
obtain the macrodynamics, where L and ¢ are the length of
delay and the time step, respectively. This means that it
is indispensable to discuss the macroscopic properties for a
large L limit. Thus, we derive the macroscopic steady state
equations by using the discrete Fourier transformation. Us-
ing the derived steady state equations, the storage capacity
can be quantitatively discussed even for a large L limit.
Then, it becomes clear that the phase transition point cal-
culated from the macroscopic steady state equations agrees
with the phase transition point obtained by time-dependent



calculation with a sufficient number of time steps from the
optimum initial condition. Furthermore, it becomes clear
that in the case of large delay length L, the storage capacity
is in proportion to the length and the proportion constant is
0.195. These results are supported by computer simulation.

2. MODEL OF DELAYED NETWORK

The delayed network discussed in this paper has N neurons,
and L—1 serial delay elements are connected to each neuron.
All neurons as well as all delay elements have synaptic con-
nections with all neurons. In this neural network, all neu-
rons and all delay elements change their states simultane-
ously. That is, this network employs a discrete synchronous
updating rule. The output of each neuron is determined as

oitt = F(uf), (1)
L-1 N

o= S @)
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where 2! denotes the output of the ith neuron at time ¢,
and Ji’j denotes the connection weight from the Ith delay
elements of the jth neuron to the ith neuron. F (-) is the
sign function defined as
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Now, let’s consider how to store the sequence of aN
memory patterns, &' — €2 — ... = £ o ... o gV,
Here, o and aN are the loading rate and the length of the
sequence, respectively. Each component £* is assumed to
be an independent random variable that takes a value of
either +1 or —1 according to the following probabilities,

Prob [¢# = 1] = % (4)

We adopt the following learning method using the cor-
relation learning,

Cl
Ty =y e, (5)
I

where ¢; is the strength of the Ith delay step.

Correlation learning is an algorithm based on Hebb’s
rule. It is inferior to the error correcting learning in terms
of storage capacity. However, as seen from eqn (5), when
adding new patterns, it is not necessary to again learn all
patterns that were stored in the past. Furthermore, corre-
lation learning has been analyzed by many researchers due
to its simplicity.

3. DYNAMICAL BEHAVIORS OF
MACROSCOPIC ORDER PARAMETERS BY
STATISTICAL NEURODYNAMICS AND
DISCUSSION

As mentioned above, a neural network in which each neuron
has delay elements [2, 14, 15] was analyzed by Yanai and
Kim [14]. In this section, the Yanai-Kim theory is re-derived

by using the statistical neurodynamics [16]. Using the re-
derived theory, we discuss the dynamical behaviors of a
delayed network. Furthermore, the relationship between
the phase transition point and the initial conditions of the
delayed network is discussed.

In the case of a small loading rate «, if a state close to
one or some of the patterns stored as a sequence are given
to the network, the stored sequence of memory patterns
is retrieved. However, when loading rate « increases, the
memory is broken at a certain «. That is, even if a state
close to one or some of the patterns stored as a sequence is
given to the network, the state of the network tends to leave
the stored sequence of memory patterns. Moreover, even if
one or some of the patterns themselves are given to the
network, the state of the network tends to leave the stored
sequence of memory patterns. This phenomenon, that is,
the memory suddenly becoming unstable at a critical load-
ing rate, can be considered a kind of phase transition.

We define the overlaps or direction cosine between a
state x' = (xf) appearing in a recall process at time ¢ and
an embedded pattern &" = (¢) as

1 N
t t

By using this definition, when the state of the network
at time ¢t and the pth pattern agree perfectly, the overlap
m} is equal to unity. When they have no correlation, the
overlap m!' is equal to zero. Therefore, the overlap provides
a way to measure recall quality.

Amari and Maginu[9] proposed the statistical neuro-
dynamics. This analytical method handles the dynamical
behavior of the recurrent neural network macroscopically,
where cross-talk noise is regarded as a Gaussian random
variable with a mean of zero and a time-dependent vari-
ance of o?. They then derived recursive relations for the
variance and the overlap.

Using eqns (2), (5) and (6), we have derived the follow-
ing macrodynamical equations.
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where m; denotes mi. Ift < 0, m: = 0 and U; = 0. If
k <0, c. =0. If either K < 0 or k' < 0, vy, = 0. The



expression erf (z) = % fom exp (—u2) du denotes the error
function.

Various cases can be considered as the initial condi-
tion of the network. For example, in the case of the one
step set initial condition, only the states of neurons are set
explicitly and those of delay elements are all zero. Then
Mo = Minis 1S the only initial condition that is set explicitly
and vp,0 = a. On the other hand, as one more extreme case,
the all steps set initial condition can also be considered,
where the states of all neurons and all delay elements are
set to be close to the stored pattern sequences. In this case,
m; = Minit, | =0,--- ,L—1landv,;=«a, I =0,--- ,L—1.
In the case where all neurons and all delay elements are
set to Miniy = 1, that is, my =1, I = 0,---,L — 1, the
maximum information for recalling the stored sequence of
memory patterns is given. Therefore, this condition can
be called the optimum initial condition. Furthermore, the
storage capacity ac is defined as the critical loading rate
where recalling becomes unstable under the optimum ini-
tial condition. We note that the derived macrodynamical
equations and the Yanai-Kim theory[14] coincide with each
other.
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Figure 1: Dynamical behaviors of recall process (L = 2,a =
0.5: theory).
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Figure 2: Dynamical behaviors of recall process (L = 2, =
0.5: computer simulation with N = 2000).

Some examples of the dynamical behaviors of recall pro-
cesses by the above theory and computer simulations are
shown in Figures 1-4. In these figures, the abscissa is time
t, and the ordinate is the overlap m:. These are the results
when the all steps set initial conditions are given. Figures
1 and 3 are the results of 30-step time-dependent theoret-
ical calculation by eqns (7)-(11) using various initial over-

laps. The details of the computer simulations shown in
Figures 2 and 4 are as follows. First, a sequence of ran-
dom patterns are generated. The length of the sequence is
alN = 1000. Each pattern is a vector in which the dimen-
sion is N = 2000. Therefore, the loading rate is @ = 0.5.
Each element of the pattern vectors takes a value of either
+1 or —1 with probability % Next, the sequence is stored
by correlation learning in two networks of which the number
of neurons is N = 2000 and the lengths of delay L are two
and three. Then, various pattern sequences are generated
where the initial overlaps with the 1st—Lth patterns stored
are 0.0 — 1.0. These are given as the initial state of the net-
work. After that, 30-step calculation is carried out by using
the updating rule of the network, that is, eqns (1)-(3).
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Figure 3: Dynamical behaviors of recall process (L = 3, =
0.5: theory).
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Figure 4: Dynamical behaviors of recall process (L = 3,a =
0.5: computer simulation with N = 2000).

According to these figures, the dynamical behaviors of
the overlaps obtained by the re-derived theory are in good
agreement with those obtained by computer simulation.
Figure 1 shows the dynamical behaviors of the overlaps in
the case of L = 2. When the initial overlaps are 0.1 — 0.7,
the overlaps somewhat increase at the first time step. How-
ever, the recall processes eventually fail regardless of the
initial overlaps. This fact indicates that the storage capac-
ity ac in the case of L = 2 is smaller than 0.5. On the
other hand, Figure 3 shows the dynamical behaviors of the
overlaps in the case of L = 3. When the initial overlap is
1.0, at the first time step the overlap somewhat decreases.
However, then the overlap tends to a value near 1.0. This
fact indicates that the storage capacity ac in the case of
L = 3 is larger than 0.5.



Figure 5 shows the relationship between the loading
rates a and the steady state overlaps mo obtained by time-
dependent theoretical calculations with a sufficient number
of steps. Figure 6 shows the results of computer simulations
under the same conditions as the theoretical calculations.
In each figure, “(1)” and “(A)” denote the one step set
initial condition and the all steps initial condition, respec-
tively. In the computer simulations, the number of neurons
is N = 500. The computer simulations have been carried
out under five conditions : L = 1, L = 3 from the one
step set initial condition, L = 3 from the all steps initial
condition, L = 10 from the one step set initial condition,
and L = 10 from the all steps initial condition. Eleven sim-
ulations have been carried out at various loading rates «
under each condition. Here, the initial overlap minit = 1
in all casesd Therefore, the all steps set initial condition
is equivalent to the optimum initial condition as described
above. In Figure 6, data points ® , o , m | 0, * indicate the
medians of the 6th largest values in the eleven trials. Error
bars indicate the third and the ninth largest values in the
eleven trials.
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Figure 5: Relationship between loading rate o and overlap
m. “(1)” and “(A)” indicate one step set initial condition
and all steps set initial condition, respectively (theory).
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Figure 6: Relationship between loading rate o and overlap
m. “(1)” and “(A)” indicate one step set initial condition
and all steps set initial condition, respectively (computer
simulation with NV = 500).

These figures show that the steady states obtained by
the re-derived theory are in good agreement with those ob-
tained by computer simulation. In the case of L = 3, the
difference between the phase transition point under the one
step set initial condition and that under the optimum ini-

tial condition is small. However, in the case of L = 10,
the difference is large. That is, the influence of the initial
condition of the network increases as the length of delay
L increases. We note that in the range between the phase
transition point under the one step set initial condition and
that under the optimum initial condition, there is the phe-
nomenon that the attractor cannot be recalled from the
former initial condition, although the sequence of memory
patterns is certainly stored.

Figure 7 shows the relationship between the length of
delay L and the critical loading rate where the phase transi-
tion occurs. This theory (Yanai-Kim theory) needs a com-
putational complexity of O(L%t) to obtain the macrody-
namics, where L and ¢ are the length of delay and the
time step, respectively. Therefore, in this method, it is in-
tractable to investigate the critical loading rate in the case
of such a large delay L. Here, the results in the cases of
L =1,2,---,10 are shown. This figure shows the following.
When the initial conditions are optimum, the relationship
between the length of delay L and the critical loading rate,
that is, the storage capacity, seems to be almost linear. It is
assumed that when the length of delay L further increases,
this tendency would continue. These characteristics are an-
alyzed in the next section. On the other hand, in the case
of the one step set initial condition, the critical loading rate
is not linear with the length of delay L but saturated. How-
ever, the reason for this phenomenon is the lack of initial
information. We note that this saturation doesn’t imply the
essential saturation of the storage capacity of the delayed
networks.
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Figure 7: Length of delay L and loading rate of phase tran-
sitions. Solid line and dashed line show results for one step
set initial condition and those for all steps set initial condi-
tion, respectively.

4. MACROSCOPIC STEADY STATE
ANALYSIS BY DISCRETE FOURIER
TRANSFORMATION AND DISCUSSION

The Yanai-Kim theory re-derived in the previous section,
that is, the macrodynamical equations obtained by the sta-
tistical neurodynamics, needs a computational complexity
of O(L*t) to obtain the macrodynamics shown in eqns (7)
and (8), where L and t are the length of delay and the
time step, respectively. Therefore, in this method, it is in-
tractable to investigate the critical loading rate for a large L
limit, that is, the asymptotic behavior of the storage capac-
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ity in the large L limit. Thus, in this section, the Yanai-Kim
theory in a steady state is considered. After that, we derive
the macroscopic steady state equations of the delayed net-
work by using the discrete Fourier transformation, where
the computational complexity does not formally depend on
L. Furthermore, the storage capacity is analytically dis-
cussed for a large L by solving the derived equations nu-
merically.

In a steady state, o¢, U and m: in eqns (7)-(11) can be
expressed as o, U and m, respectively. In addition, v,_; .
can be expressed as v;_ because of the parallel symmetry
in terms of v. Using the discrete Fourier transformation and
the inverse discrete Fourier transformation, we can obtain
the steady state equations in terms of the macroscopic vari-
ables of the network as eqns (12)-(15). Eqn(12) is shown at
the top of this page.
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Though the derived macroscopic steady state equations
include a simple integral, their computational complexity
does not formally depend on L. Therefore, we can easily
perform numerical calculations for a large L.
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Figure 8: Relationship between loading rate o and overlap
m. These lines are obtained by solving steady state equa-
tions numerically. Storage capacity is 0.195L with large L
limit.

Figure 8 shows the relationship between the loading rate
«a and the overlap m, which is obtained by solving these
equations numerically.

Comparing Figure 5 and 8, especially considering the
case of L = 1, 3,10, we can see that the overlaps obtained by
the macroscopic steady state equations in this section agree
with those obtained by the dynamical calculations having
sufficient time steps from the optimum initial conditions in
the previous section. In other words, the phase transition
points obtained by the macroscopic steady state equations

derived in this section agree with the storage capacity, that
is, the phase transition points under the optimum initial
condition. This fact shows that the solution to the dynam-
ical equations from the optimum initial condition and the
solution to the steady state equations support each other.
From Figure 8, we can see that the storage capacity in-
creases in proportion to the length of delay L with a large
L limit and the proportion constant is 0.195. That is, the
storage capacity of the delayed network ac equals 0.195L
when the length of delay L is large. Though the result that
the storage capacity of the delayed network is in propor-
tion to the length of delay L is not nontrivial, the fact that
this result has been proven analytically is significant. The
proportion constant 0.195 is the mathematically significant
number as the limit of the delayed network’s storage capac-

ity.
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