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A Theory of Associative Memory Model with Synaptic Delay and Pruning
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Abstract It is known that storage capacity per synapse increases by synaptic pruning in the case of a correlation-type
associative memory model. However, the storage capacity of the whole network then decreases. To overcome this
difficulty, we propose that the connecting rate is decreased while keeping the total number of synapses constant by
introducing delayed synapses. First, we re-derive the Yanai-Kim theory by employing the statistical neurodynamics.
Next, we derive macroscopic steady state equations of the model by using the discrete Fourier transformation. Fur-
thermore, two types of synaptic prunings are treated analytically. As a result, it becomes clear that in both prunings,
the storage capacity increases as the length of delay increases and the connecting rate of the synapses decreases when
the total number of synapses is constant. These results theoretically support the significance of pruning following
over-growth of synapses in the brain, and strongly suggest that the brain prefers to store dynamic attractors such as
sequences and limit cycles, rather than equilibrium states.

Key words associative memory, neural network, delay, synaptic pruning, statistical neurodynamics

. ory [1], models with randomly pruned synapses have been dis-
1. Introduction ] ) ) o
cussed in detail [2]-[5]0 As a result, it became quantitatively

Robustness against noise and damage is often given as a
positive feature of neural networks. Therefore, it is important
to analyze neural networks with respect to synaptic pruning.

Particularly in the case of correlation-type associative mem-

clear that synapse efficiency, which is defined by storage ca-
pacity per synapse, increases by synaptic pruning, although
storage capacity of the whole network decreases.

On the other hand, it is universally observed that synapses



are pruned following over-growth in real neural systems [5]-
[15]. Though the functional significance of this phenomenon
in not known, Chechik et al. recently proposed the follow-
ing hypothesis[5]. They considered cutting synapses that are
lightly weighted after learning with an excess of synapses,
expecting synapse efficiency to increase by such systematic
pruning. Therefore, they supposed that increasing synapse
efficiency in that way gives functional significance to synap-
tic pruning following over-growth. They used a correlation-
type auto-associative memory model to verify this hypothe-
sis from a theoretical standpoint. After correlation learning,
they left heavily weighted synapses in the model, in which all
neurons are fully connected. Through computer simulations,
they showed that the synapse efficiency increases by obtaining
storage capacity. In this paper, synaptic pruning as described
above is called systematic pruning. Though the hypothesis of
Chechik et al. is interesting as neuroscience, there are some
unclear or imperfect points from the theoretical viewpoint: for
example, what degree of systematic pruning is more efficient
than random pruning. Therefore, Mimura et al. [4] analyzed
this system by using the SCSNA [21], which is the method of
statistical mechanics. They showed that systematic pruning
increases synapse efficiency by the order of —In(1 — R) over
random pruning at the limit when R approaches unity, where
R (0 2 R 2 1) is the rate of synaptic pruning. The important
point in this case is that the storage capacity of the whole net-
work decreases, though synapse efficiency increases by random
pruning or systematic pruning.

To overcome this difficulty, we propose to decrease the con-
necting rate while keeping the total number of synapses con-
stant by introducing delayed synapses with respect to a dis-
crete synchronous-type model. In this model, the storage
capacity is expected to grow with increases in synapse effi-
ciency because synapse efficiency increases by synaptic prun-
ing, while the total number of synapses remains constant.
The discrete synchronous-type model with delayed synapses
[16],[24], [27] was proposed by Fukushima[16].
Kim [24] theoretically analyzed this model with the statisti-

Yanai and

cal neurodynamics [22]. Their theory closely agrees with the
results of our computer simulation.

In this paper, after defining the model, we re-derive the
Yanai-Kim theory [24], [25] using the statistical neurodynam-
ics [22], involving macrodynamical calculations for a network
with delayed synapses. The Yanai-Kim theory needs a com-
putational complexity of O(L*t) to obtain the macrodynam-
ics, where L and t are the length of delay and the time
step, respectively. Therefore, this theory is intractable for

discussing macroscopic properties at the limit where L is ex-

tremely large [26]. Thus, accounting for the parallel symmetry
of time steps, which holds in the steady state of the Yanai-
Kim theory, we derive the macroscopic steady state equations
by employing the discrete Fourier transformation, where the
computational complexity does not formally depend on L. Us-
ing the derived steady state equations, storage capacities can
be quantitatively discussed even for a large L limit.

Next, synaptic pruning in the delayed network is treated
theoretically, and storage capacities are evaluated quantita-
tively. We deal with two types of pruning: random pruning
and systematic pruning. As a result, it becomes clear that in
both types of pruning, storage capacity increases as the length
of delay increases, while the connecting rate of synapses de-
creases where the total number of synapses is constant. More-
over, an interesting fact becomes clear; that is, the storage
capacity asymptotically approaches 2/m by random pruning.
In contrast, the storage capacity diverges in proportion to the

logarithm of the length of delay L by systematic pruning.

2. Delayed Network

2.1 Model

The structure of a delayed network discussed in this pa-
per is shown in Figure 1. This figure corresponds to the case
of fully synaptic connections, meaning no synaptic pruning.
The network has N neurons, and L — 1 serial delay elements
are connected to each neuron. All neurons, as well as all de-
lay elements, have synaptic connections with all neurons. In
this neural network, all neurons and all delay elements change
their states simultaneously, i.e., this network employs a dis-
crete synchronous updating rule. The output of each neuron

is determined by

2™ = F (uf) (1)
F () =sgn() (2)
’U/f = ;§ij$;_l7 (3)

where 2! denotes the output of the ith neuron at time ¢, and
Jf]- denotes the connection weight from the lth delay elements
of the jth neuron to the ith neuron. Here, sgn is the sign
function defined as

sgn (u) ={ st (1

-1, u<0

In this paper, the limit N — oo is used unless stated other-
wise.

Let us consider the storing sequence of a/N memory pat-
terns, £ — €2 — .. = €4 — ... = €N Here, @ and aN
are the loading rate and the length of the sequence, respec-

tively. Each component of £* is assumed to be an independent
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Figure 1 Structure of delayed network.

random variable that takes a value of either +1 or —1 accord-

ing to the following probabilities,
1

Prob [¢! = 1] = 3 (5)
The synaptic weight .J;; is determined by correlation learn-
ing:
Cl
Ty = o et (6)

P
where ¢; is the strength of the Ith delay step.

Correlation learning is an algorithm based on Hebb rule,
and it is inferior to the error correcting learning in terms of
storage capacity. However, as seen in eqn (6), it is not neces-
sary to re-learn all patterns that were stored in the past when
adding new patterns. Furthermore, correlation learning has
been analyzed by many researchers due to its simplicity.

2.2 Dynamical Behaviors of Macroscopic Order

Parameters by Statistical Neurodynamics

In the case of a small loading rate «, if a state close to one
or some of the patterns stored as a sequence are given to the
network, the stored sequence of memory patterns is retrieved.
However, when the loading rate « increases, the memory fails
at a certain a. That is, even if a state close to one or some
of the patterns stored as a sequence is given to the network,
the state of the network tends to omit the stored sequence
of memory patterns. Moreover, even if one or some of the
patterns themselves are given to the network, the state of the
network tends to leave the stored sequence of memory pat-
terns. This phenomenon of the memory suddenly becoming
unstable at a critical loading rate can be considered a kind of
phase transition. Here, the storage capacity ac¢ is defined as
the critical loading rate where recalling becomes unstable.

We define the overlap, or direction cosine, between a state
x' = (=) appearing in a recall process at time ¢ and an em-
bedded pattern &* = (§!) as

1
t __ w_t
my, = NZlfl Ti. (7)

Using this definition, when the state of the network at time ¢
and the pth pattern agree perfectly, the overlap m!' is equal to
unity. When they have no correlation, the overlap m} is equal
to zero. Therefore, the overlap provides a means of measuring
recall quality.

Amari and Maginu [22] proposed the statistical neurody-
namics. This analytical method handles the dynamical behav-
ior of recurrent neural network macroscopically, where cross-
talk noise is regarded as a Gaussian random variable with a
mean of zero and a time-dependent variance of o7. They then
derived recursive relations for the variance and the overlap.

Using eqns (1)-(7), we can derive the following macrody-

namical equations.

L-1L-1
of =) > ccrviisr, (3)
1=0 I'=0
Ve—1,t—1! = 045!,1/
L-1L-1
+ U Uy Z Z ChCR/ Vg h—1 =" — k' —1
k=0 k'=0
+ aleip Uiy +er——1Ua) (9)
Z1n2
7 1 (St 1)
U =1/= e —_ 10
t P XP( 272, )’ (10)
L1
st = cimy—, (11)
1—0
ot
Miyr1 = erf( ) , (12)
20',5

where m; denotes mi. Ift <0, m: =0 and U; = 0. If k < 0,
e, = 0. If either K < 0 or ¥ < 0, vp s = 0. The expres-
sion erf (z) = % Jo exp (—u”) du denotes the error function.

In this paper, the initial condition is that the states of all



neurons and all delay elements are set to be the stored in pat-
tern sequences. In this case, m; =1 (I = 0,---,L — 1) and
vi=a(l=0,---,L—1).

We note that the derived macrodynamical equations and
the Yanai-Kim theory [24], [25] coincide.

2.3 Macroscopic Steady State Analysis by Discrete

Fourier Transformation and Discussion

The Yanai-Kim theory re-derived in the previous section,
which involves the macrodynamical equations obtained by the
statistical neurodynamics, needs a computational complexity
of O(L*t) to obtain the macrodynamics as shown in eqns (8)
and (9), where L and ¢ are the length of delay and the time
step, respectively. Therefore, in this method, it is intractable
to investigate the critical loading rate for a large L limit, i.e.,
the asymptotic behavior of the storage capacity in a large L
limit. Thus, in this section, we consider the Yanai-Kim the-
ory in a steady state and derive the macroscopic steady state
equations of the delayed network. Furthermore, the storage
capacity is analyzed for a large L by solving the derived equa-

tions numerically [25].
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Figure 3 Relationship between loading rate a and overlap m.

(computer simulation)

For simplicity, let us assume that ¢, =1, { =0, ---,L — 1.
In a steady state, v,_;;_;+ can be expressed as v;_; because
of the parallel symmetry in terms of time step. Using the dis-
crete Fourier transformation and the inverse discrete Fourier

transformation, we obtain

L—1 T
2 _ . 1 jom SEn
of= > (L- [nf) Jim oo >V (r)e??TeT (13)
n=1—L r=—T
From eqns (10)-(12) and (13), we can obtain the steady state
equations in terms of the network’s macroscopic variables as
eqns (14)-(17).

/% a[(1 ~ U)sin(mz) + Usin {(2L + 1) na}] [1 - cos(2Lmz)]
N -1 sin(nz) [2sin?(rz) — U2 {1 — cos(2L7z)}]
(14)
21 >
U = \/j— exp . (15)
To 202
s = mL (16)
m = erf <i> (17)
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Figure 4 Relationship between loading rate a and overlap m.

These lines are obtained by solving steady state equa-
tions numerically. Storage capacity is 0.195L, with a

large L limit.

Though the derived macroscopic steady state equations in-
clude a simple integral, their computational complexity does
not formally depend on L. Therefore, we can easily perform
numerical calculations for a large L. Figure 2 shows the re-
sults of theoretical calculation in cases where L = 1,3 and 10,
which are obtained by solving these equations numerically.
Figure 3 shows the results of computer simulations. In these
Figures, the abscissa is the loading rate a. In the computer
simulations, the number of neurons is N = 500, and the steady
state overlaps mo, are obtained by calculations with a suffi-
cient number of steps. Eleven simulations were carried out
for each combination of loading rate a and length of delay L.
Data points e | o , m indicate the medians of the sixth largest

values in the eleven trials. Error bars indicate the third and



the ninth largest values in the eleven trials. In each trial, the
loading rate is increased by adding new patterns.

These figures show that the steady states obtained by the
derived theory agree closely with those obtained by computer
simulation. Therefore, in the case of a large L, only the theo-
retical calculations are executed. Figure 4 shows the results.
From this figure, we can see that the storage capacity increases
in proportion to the length of delay L with a large L limit and
a proportion constant of 0.195. In other words, the storage
capacity of the delayed network a¢ equals 0.195L when the
length of delay L is large. Although the result indicating that
the delayed network’s storage capacity is in proportion to the
length of delay L may be trivial, the fact that this result has
been proven analytically is significant. Moreover, the propor-
tion constant 0.195 is a mathematically significant number be-
cause it represents the limit of the delayed network’s storage

capacity.
3. Synaptic Pruning

3.1 Necessity of Analyzing Synaptic Pruning

During brain development, the phenomenon of synaptic
pruning following over-growth [5]-[15] is observed. Since this
pruning following over-growth seems to be a universal phe-
nomenon occurring in almost all areas — visual cortex, motor
area, association area, and so on, it is important to analyze
synaptic pruning and to discuss its properties quantitatively.

In the case of a delayed network with no pruning, it is ob-
vious that storage capacity increases as the length of delay L
increases. On the contrary, it is interesting to analyze the stor-
age capacity of a delayed network that has a constant number
of synapses by introducing synaptic pruning.

It has been reported that the synapse efficiency, which is de-
fined as storage capacity per synapse, increases due to synap-
tic pruning in networks with no delay elements[2], [5]. A cou-
ple of pruning can be considered, namely random pruning
and systematic pruning, which are typical methods[2], [3], [5].
Mimura et al. [4] showed that synapse efficiency converges to
2 by random pruning, and diverges as Z(—2Inc) at the limit
where the connecting rate c is extremely small. Here, the re-
lation between connecting rate ¢ and pruning rate R is given
by ¢ = 1 — R. The important point here is that the storage
capacity of the whole network decreases, since the number of
synapses decreases.

In the following discussion, a delayed network with synaptic
pruning is analyzed on the basis of macrodynamical equations
and macroscopic steady state equations derived in the former
section. We consider two types of pruning —random pruning

and systematic pruning— for synaptic pruning.

3.2 Random Pruning

In this section, synapses of a delayed network are randomly
pruned. Random pruning of synapses can be realized with-
out any complicated control mechanisms, therefore, it is im-
portant to investigate its effect on the dynamical behavior of
pattern racalling and storage capacity.

In the random synaptic pruning model, synaptic connec-

tions are constituted as

l
CiC;;
Ty = 2 > &ty (18)
I

Nec
Prob[cij =1]=1- Prob[cij =0] =g, (19)
where c is the connecting rate.
Modifying eqn (18), we obtain

1 Cl
JL =

= LN utttgn | A0 76 (¢ =) S erttHer (20)
TN Ne P

" I
We can obtain the macrodynamical equations for random

pruning as follows,

L1
_2 s a(l—c) 5
Ut:Ut‘FiE Cr, (21)
c
=0
L-1L-1
2
oy = E E ClCy Vg1, (22)
1=0 1'=0
Vi—1,t—1! = 051,1'
L-1L-1
+ U Uy E E ChCR/ Vg h—1 =" — k' —1
k=0 k' =0
+ a1 Uiy +cp_1Uiy), (23)

9 1 (St71)2
Uy =/ 2— A/ 24
' T o1 eXp( 252, | (24)
L-1
st = Zczmtfz, (25)
[=0

st >
m =erf| — ], 26
- ( oo (26)

where the initial conditions are the same as in the case of a
fully connected network. ¢ is Kronecker’s delta. Equation
(21) means that the variance &7 after pruning is the sum of
the variance of cross-talk noise among patterns and the vari-
ance of new noise generated by pruning. Finally, as for a fully
connected network, the macroscopic steady state equations in
the case of random pruning become

a(l—c) =
5% = UZ-I-fZClz (27)
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where o2 is given by eqn (14).

It is obvious that storage capacity increases with the length
of delay L if the connecting rate c is constant. Therefore, the
storage capacity ac is investigated under the condition that
cx L is constant. That means eqns (27)-(30) are solved numer-
ically and the steady state overlaps mo, are investigated using
¢ =1/L, where ¢; = 1. Figure 5 shows the results of theoreti-
cal calculations and computer simulations when L =1,2,3,5
and 10. In this figure, the abscissa is loading rate a. In the
computer simulations, the number of neurons is N = 500,
and the steady state overlaps mo are obtained by calcula-
tions with a sufficient number of steps. Eleven simulations
were carried out for each combination of loading rates o and
length of delays L. Data points e , o , m , 0, * indicate
the medians of the sixth largest values in the eleven trials.
Error bars indicate the third and the ninth largest values in
the eleven trials. In each subsequent trial, the loading rate is

increased by adding new patterns.
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Figure 5 Relationship between loading rate o and overlap m when
synapses are randomly pruned. (theory(t) and computer
simulation(s))
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Figure 6 Relationship between loading rate a and overlap m when

synapses are randomly pruned. (theory)

Figure 5 displays the following. In the case of L =

1 (c = % = 1.0), that is fully connected with no delay ele-
ments, the recurrent neural network’s storage capacity ac for
sequential association is 0.269. This agrees with published
values [28]-[30]. As the length of delay L increases, storage
capacity a¢ increases though the total number of synapses is
constant. This phenomenon is due to the time lag of synap-
tic inputs by delays that reduces statistical correlation among
synaptic inputs. As a result, variance of the noise component
decreases. This figure shows that theoretical results closely
agree with the simulation results. Therefore, only a theoreti-
cal calculation is executed when the length of delay L is large.
Figure 6 shows the results.

In Figure 6, the property L = oo is obtained by setting
U = 0. The storage capacity in this case is 2/7 = 0.6366 - - -.
Figure 6 shows that the storage capacity approaches this value
asymptotically as L increases.

3.3 Systematic Pruning

Chechik et al.[5] discussed the functional significance of
synaptic pruning following over-growth on the basis of a
correlation-type associative memory model. They pointed out
that synapse efficiency, which is storage capacity per synapse,
increases by cutting synapses that are lightly weighted after
correlation learning.

Systematic pruning like that can be expressed by nonlin-
ear function f(-) shown in Figure 7. Synapses in the range
of —z¢,, < z < +z, are pruned by f(-). In this case, the

relationship between the connection rate ¢ and 2, is given by

Zth
c= Dz=1—erf (—) , (31)
/{Z\f(Z)ﬂFO} V2

where Dz stands for \/%exp (—é) dz, and the integral is

from —oco to +oo.
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Figure 7 Nonlinear function for systematic pruning.

In the systematic pruning model, synaptic connections are

constituted by

l
Jij =

aval . (T}), (32)

N
1
T = —— ) gtitler (33)
vValN "



Equation (33) is a stochastic variable that obeys normal dis-
tribution N [0, 1].
Modifying the connection weight .J;; [3], we obtain

T = C"]/V‘W 7 (15) (34)
_ VoN (Gt (1 () - 1)), (35)
where

J = /Da:f’ () (36)
= /Da:a:f (). (37)

We can obtain the macrodynamical equations for systematic

pruning as follows,

L—1
5 =l va(F-0) Ye, (39)
[=0
L—1L-1
crf = J? Z Z CICI V1 ¢ 1, (39)
1=0 I'=0

J / Dz (f ()%, (40)
J = /Dmmf (z), (41)

Vi1, t—1' = 051,1'
L-1L-1
+ UiUp_yp E E ChCRI Ve[ —1,6—1 —k!—1
k=0 /=0
+ a(a_r-1Uip +cro121Uiy), (42)

7 1 (St—1)2
U =4/ = - - ) 43
TV TE L O ( 257, (43)

L—1
sf=J Z cmy—g, (44)
[=0

St
—erf | —— ), 45
e T (ﬂ&) ()

where the initial conditions are the same as in the case of
a fully connected network. ¢ is Kronecker’s delta. Eqn (38)
means that the variance &; after pruning is the sum of the vari-
ance o} of cross-talk noise among patterns and the variance
«@ (j2 — J2) ZIL;OI ¢l of new noise generated by pruning. Fi-
nally, as in the case of full connections, the macroscopic steady

state equations in the case of systematic pruning become

j‘2 L—1
&2 :g2+a(ﬁ—1)2cl2, (46)
=0
/21 2
U = ;gQXp( 2~2>, (47)
s = mL, (48)

where o is given by eqn (14).

As for random pruning, the storage capacity a¢ is investi-
gated under the condition that ¢ x L is constant. That means
eqns (46)-(49) are solved numerically, and the steady state
overlaps mo, are investigated using ¢ = 1/L, where ¢; = 1.
Figure 8 shows the results of theoretical calculations and com-
puter simulations when L = 1,2,3,5 and 10. In this figure,
the abscissa is the loading rate . In the computer simula-
tions, the number of neurons is NV = 500, and the steady state
overlaps mo, are obtained by calculations with a sufficient
number of steps. Eleven simulations were carried out for each
combination of loading rate a and length of delays L. Data
points e ; o . m, O, * indicate the medians of the sixth largest
values in the eleven trials. Error bars indicate the third and
the ninth largest values in the eleven trials. In each trial, the

loading rate is increased by adding new patterns.
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Figure 9 Relationship between loading rate a and overlap m when

synapses are systematically pruned. (theory)

Figure 8 shows the following. As the length of delay L in-
creases, storage capacity ac¢ increases though the total num-

ber of synapses is constant. This figure shows that theoretical



results closely agree with the simulation results. Therefore,
only a theoretical calculation is executed when the length of
delay L is large. Figure 9 shows the results.

Figure 9 shows the following. As the length of delay L in-
creases, storage capacity a¢ increases, though the total num-
ber of synapses is constant; the tendency to increase is dif-
ferent from that of random pruning. Storage capacity is in
proportion to the logarithm of the length of delay L, and
the proportion constant is 2.8, i.e., ac = 2.8log L. In the
other words, for systematic pruning, storage capacity diverges
with the increase in the length of delay L. It is amazing that
the storage capacity diverges regardless of whether the total
number of synapses is constant. However, this fact is also

supported by Mimura et al. [4] described in Sec.3. 1.
4. Conclusion

We analyzed a discrete synchronous-type model that adopts
correlation learning by using the statistical neurodynamics,
and discussed sequential associative memory by recurrent neu-
ral networks with synaptic delay and pruning. First, we re-
derived the Yanai-Kim theory, which involves macrodynami-
cal equations for the dynamics of the network with serial delay
elements. Next, accounting for the parallel symmetry of the
re-derived equations, we derived the macroscopic steady state
equations of the model by using the discrete Fourier trans-
formation. The storage capacity was analyzed quantitatively.
As a result, we showed that the storage capacity is in propor-
tion to the length of delay L when the L limit is large and
the proportion constant is 0.195. Furthermore, two types of
synaptic prunings were analyzed: random pruning and sys-
tematic pruning. As a result, it became clear that under both
pruning conditions, the storage capacity grows with an in-
crease in delay and decrease in the connecting rate when the
total number of synapses is constant. Moreover, an interest-
ing fact became clear: the storage capacity approaches 2/m
asymptotically by random pruning. In contrast, the storage
capacity diverges in proportion to the logarithm of the length
of delay by systematic pruning. These results theoretically
support the significance of pruning following over-growth of
synapses in the brain [5]-[15] and strongly suggest that the
brain prefers to store dynamic attractors such as sequences or
limit cycles, rather than equilibrium states.

In this paper, we treated random patterns, in which each
element takes +1 with a probability of 0.5. It is interesting
future work to treat sparse patterns in which each element

takes +1,0.
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