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Abstract— Ensemble learning of � nonlinear perceptrons,
which determine their outputs by sign functions, is discussed
within the framework of online learning and statistical mechan-
ics. This paper shows that ensemble generalization error can be
calculated by using two order parameters, that is, the similarity
between a teacher and a student, and the similarity among
students. The differential equations that describe the dynamical
behaviors of these parameters are derived analytically in the
cases of Hebbian, perceptron and AdaTron learning. These three
rules show different characteristics in their affinity for ensemble
learning, that is “maintaining variety among students.” Results
show that AdaTron learning is superior to the other two rules.

I. INTRODUCTION

Ensemble learning has recently attracted the attention of
many researchers [1], [2], [3], [4], [5], [6]. Ensemble learning
means to combine many rules or learning machines (students
in the following) that perform poorly. Theoretical studies
analyzing the generalization performance by using statistical
mechanics[7], [8] have been performed vigorously[4], [5], [6].

Hara and Okada[4] theoretically analyzed the case in which
students are linear perceptrons. Their analysis was performed
with statistical mechanics, focusing on the fact that the output
of a new perceptron, whose connection weight is equivalent to
the mean of those of students, is identical to the mean outputs
of students. Krogh and Sollich[5] analyzed ensemble learning
of linear perceptrons with noises within the framework of
batch learning.

On the other hand, Hebbian learning, perceptron learning
and AdaTron learning are well-known as learning rules for
a nonlinear perceptron, which decides its output by sign
function[9], [10], [11], [12]. Urbanczik[6] analyzed ensemble
learning of nonlinear perceptrons that decide their outputs by
sign functions for a large � limit within the framework of
online learning[13]. Though Urbanczik discussed ensemble
learning of nonlinear perceptrons within the framework of
online learning, he treated only the case in which the num-
ber � of students is large enough. Determining differences
among ensemble learnings with Hebbian learning, perceptron
learning and AdaTron learning (three typical learning rules),
is a very attractive problem, but it is one that has never been
analyzed to the best of our knowledge.

Based on the past studies, we discuss ensemble learning of
� nonlinear perceptrons, which decide their outputs by sign

functions within the framework of online learning and finite
� [14], [15]. First, we show that an ensemble generalization
error of � students can be calculated by using two order
parameters: one is a similarity between a teacher and a stu-
dent, the other is a similarity among students. Next, we derive
differential equations that describe dynamical behaviors of
these order parameters in the case of general learning rules.
After that, we derive concrete differential equations about
three well-known learning rules: Hebbian learning, perceptron
learning and AdaTron learning. We calculate the ensemble
generalization errors by using results obtained through solving
these equations numerically. Two methods are treated to
decide an ensemble output. One is the majority vote of
students, and the other is an output of a new perceptron whose
connection weight equals the means of those of students. As
a result, we show that these three learning rules have different
properties with respect to an affinity for ensemble learning,
and AdaTron learning, which is known to have the best
asymptotic property [9], [10], [11], [12], is the best among
the three learning rules within the framework of ensemble
learning.

II. MODEL

Each student treated in this paper is a perceptron that
decides its output by a sign function. An ensemble of �
students is considered. Connection weights of students are
������ � � � ��� . �� � ����� � � � � ��� �� � � �� �� � � � ��
and input � � ���� � � � � �� � are � dimensional vectors.
Each component �� of � is assumed to be an indepen-
dent random variable that obeys the Gaussian distribution
���� ����. Each component of ��

�, that is the initial value
of ��, is assumed to be generated according to the Gaussian
distribution ���� �� independently. Each student’s output is
sgn������� sgn������� � � � � sgn��� ��� where

sgn������ �

�
��� ���� � ��
��� ���� 	 ��

(1)

���� � �� � �
 (2)

Here, �� denotes the length of student ��. This is one of the
order parameters treated in this paper and will be described
in detail later. In this paper, �� is called a normalized internal
potential of a student.



The teacher is also perceptron that decides its output by a
sign function. The teacher’s connection weight is �. In this
paper, � is assumed to be fixed where � � ���� � � � � �� � is
also an � dimensional vector. Each component �� is assumed
to be generated according to the Gaussian distribution ���� ��
independently. The teacher’s output is sgn��� where

� � � � �
 (3)

Here, � represents an internal potential of the teacher. For
simplicity, the connection weight of a student and that of the
teacher are simply called student and teacher, respectively.

In this paper the thermodynamic limit � � � is also
treated. Therefore,

��� � �� ��� �
�
�� ���

�� �
�
�� (4)

where � � � denotes a vector norm. Generally, a norm of student
���� changes as the time step proceeds. Therefore, the ratio
�� of the norm to

�
� is considered and is called a length of

student ��. That is,

���� � ��
�
�� (5)

where �� is one of the order parameters treated in this paper.
The common input � is presented to the teacher and all

students in the same order. Each student compares its output
and an output of the teacher for input �. Each student’s
connection weight is corrected for the increasing probability
that the student output agrees with that of the teacher. This
procedure is called learning, and a method of learning is called
learning rule, of which Hebbian learning, perceptron learning
and AdaTron learning are well-known examples[9], [10], [11],
[12]. Within the framework of online learning, information
that can be used for correction other than that regarding a
student itself is only input � and an output of the teacher for
that input. Therefore, the update can be expressed as follows,

�
���

� � �
�
� � 
�� �

�� (6)


�� � 
�sgn����� ��� �� (7)

where � denotes time step, and 
 is a function determined
by learning rule.

III. ENSEMBLE GENERALIZATION ERROR

One purpose of statistical learning theory is to theoretically
obtain generalization error. In this paper, two methods are
treated to determine an ensemble output. One is the majority
vote of � students, which means an ensemble output is
decided to be �� if students whose outputs are �� exceed
the number of students whose outputs are ��, and �� in the
opposite case.

Another method for deciding an ensemble output is adopt-
ing an output of a new perceptron whose connection weight
is the mean of the weights of � students. This method is
simply called the weight mean in this paper.

We use

� � �

�
�sgn �� � �� sgn

�
��
���

sgn ��� � ��
��

� (8)

and

� � �

�
�sgn �� � �� sgn

��
�

�

��
���

��

�
� �
��

� (9)

as error � for the majority vote and the weight mean, respec-
tively. Here, �, � and �� denote ��, �� and ��� , respectively.
However, superscripts �, which represent time steps, are
omitted for simplicity. Then, ���� is the step function defined
as

���� �

�
��� � � ��
�� � 	 �


(10)

In both cases, � � � if an ensemble output agrees with
that of the teacher and � � � otherwise. Generalization error
�� is defined as the average of error � over the probability
distribution ���� of input �. The generalization error ��
can be regarded as the probability that an ensemble output
disagrees with that of the teacher for a new input �. In the
case of a majority vote, using Eqs. (2), (3) and (8), we obtain

� � �

�
�sgn���

��
���

sgn ����

�

 (11)

In the case of a weight mean, using Eqs. (2), (3) and (9), we
obtain

� � �

�
�sgn ��� sgn

�
��
���

��

��

 (12)

That is error � can be described as � � ������� �� by using
a normalized internal potential �� for the student and an
internal potential � for the teacher in both cases. Therefore,
the generalization error �� can be also described as

�� �

�
������� �

� ��
���

������������ ��������� ���

(13)

by using the probability distribution ������� �� of �� and �.
As the thermodynamic limit � � � is also considered in
this paper, �� and � obey the multiple Gaussian distribution
based on the central limit theorem. As input � and �� have
no correlation with each other within the framework of online
learning, from Eq. (2), the mean and the variance of �� are
0 and 1, respectively. In the same manner, since an input �
and � have no correlation with each other, from Eq. (3), the
mean and the variance of � are 0 and 1, respectively.

From these, all diagonal components of the covariance
matrix � of ������� �� equal unity.

Let us discuss a direction cosine between connection
weights as preparation for obtaining non-diagonal compo-
nents. First, �� is defined as a direction cosine between a
teacher � and a student ��. That is,

�� 	 � � ��
������� �

�

���

��
���

�����
 (14)

When a teacher � and a student �� have no correlation,
�� � �, and �� � � when the directions of � and ��



agree. Therefore, �� is called the similarity between teacher
and student in the following. Furthermore, �� is the second
order parameter treated in this paper. Next, ���� is defined as
a direction cosine between a student �� and another student
��� . That is,

���� 	 �� � ���
�������� � �

�

������

��
���

�������� (15)

where � 
� ��. When a student �� and another student
��� have no correlation, ���� � �, and ���� � � when the
directions of �� and ��� agree. Therefore, ���� is called the
similarity among students in the following, and ���� is the
third order parameter treated in this paper.

Covariance between an internal potential � of a teacher �
and a normalized internal potential �� of a student �� equals
a similarity �� between a teacher � and a student �� as
follows,

����� �

�
�

��

��
���

����

��
���

�����

�
� ��� (16)

where ��� denotes the average. Covariance between a normal-
ized internal potential �� of a student �� and a normalized
internal potential ��� of another student ��� equals a similar-
ity ���� among students as follows,

������� �

�
�
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���
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�
� ���� 
 (17)

Therefore, Eq. (13) can be rewritten as

�� �

� ��
���

������������ ��������� ��� (18)
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As a result, a generalization error �� can be calculated if all
similarities �� and ���� are obtained. Let us thus discuss
differential equations that describe dynamical behaviors of
these order parameters. In this paper, norms of input, teacher
and student are set as Eq. (4); influence of input can be
replaced with the average over the distribution of inputs
(sample average) in a large � limit. This idea is called
self-averaging in statistical mechanics. Differential equations
regarding �� and �� for general learning rules have been

obtained based on self-averaging as follows[9],

���
��

� �
�����
�

��
�

���
� (21)

���

��
�

�
��� � �
������

��
� ��

����

�

��
�
� (22)

where ��� stands for the sample average.
Next, let us derive a differential equation regarding ����

for the general learning rule. Considering a student �� and
another student ��� and rewriting as ��� � ��, ����

� � �� �
���, ����� � ���� , �

���

��� � ���� � ����� and ��� � ��, a
differential equation regarding � is obtained as follows,

�����

��
�

�
����� � ���� �
������
���

�
�
����� � ���� �
����

��

�
�
�
���
�����

� ����

�

��

��
�

���
�

�

���
�

����

�
� (23)

from Eqs. (6), (15), (21) and self-averaging.

IV. ANALYTICAL RESULTS

A. Conditions of analytical calculations

Similarities �� and ���� increase and approach unity as
learning proceeds, leading to �� and ���� becoming less
irrelevant to each other. For example when �� � ��� � �,
���� cannot be 
� � since a teacher �, a student �� and
another student ��� have the same direction. Thus, �� and
���� are under a certain restraint relationship each other. When
���� is relatively smaller when compared with ��, variety
among students is further maintained and the effect of the
ensemble can be considered as large. On the contrary, after
���� becomes unity, a student �� and another student ��� are
the same and there is no merit in combining them.

Let us explain these considerations intuitively by using
Figure 1, and let us assume that learning starts from the con-
dition that connection weights of students have no correlation.
When learning has proceeded to some degree, � connection
weight vectors �� of � students must distribute at the same
distance from connection weight vector � of the teacher, as
shown in Figure 1. Especially, Figure 1(a) shows the case
in which students are unlike each other — in other words
the variety among students is large, that is, � is small. In this
case, a mean vector �

�

��

��� �� of the connection weights of
students can closely approximate the connection weight vector
� of the teacher. Thus a combination of students in some
sense can approximate the teacher better than each student
can do alone. In this case, the effect of ensemble learning is
strong. On the contrary, Figure 1(b) shows the case in which
students are similar to each other — in other words the variety
among students is small, that is, � is large. In this case, the
significance of combining three students is small. Therefore,
effect of ensemble learning is small when � is large, as in
Figure 1(b).

Thus, the relationship between �� and ���� is essential to
know in ensemble learning. This relationship regarding linear
perceptron has already been analyzed quantitatively in very
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Fig. 1. Effect of ensemble learning �� � ��.

clear form[4]. Here, we analytically investigate the relation-
ship between �� and ���� with respect to three learning rules
of nonlinear perceptrons in the following.

As described above, in this paper each component of initial
value ��

� of student �� and teacher � is generated indepen-
dently according to the Gaussian distribution ���� ��, and
the thermodynamic limit � � � is considered. Therefore,
all ��

� and � are orthogonal to each other. That is,

��
� � �� ����� � �
 (24)

From Eq. (24) and symmetry of students, we can write

�
����� � �
����� � �
�
��� � �
��
�� (25)

in Eq. (23). From Eq. (24) and symmetry among students, we
omit subscript �� �� from order parameters ��� �� and ���� in
Eqs. (21)–(23) and write them as �� � and �. In the following
sections, we discuss five sample averages �
����, �
���,�

��
�
, �
����� and �
�
��� concretely, which are necessary

to solve Eqs. (21)–(23) with respect to typical learning rules
under the conditions given in Eqs. (24)–(25).

B. Hebbian learning

The update procedure for Hebbian learning is


�sgn���� �� � sgn���
 (26)

Using this expression, �
����, �
��� and
�

��
�

in the
case of Hebbian learning can be obtained as follows
analytically[9], [16].

�
���� � ���
��

� �
��� �
�

�

�
�
�

��
�
� �
 (27)

In this section, �
����� and �
�
��� are derived. Since
Eq.(26) is independent of �, we obtain

�
����� � �
���� � ���
��

� �
�
��� � �
 (28)

Figure 2 shows a comparison between the analytical results
regarding the dynamical behaviors of � and �, which are
obtained by solving Eqs.(21)–(25), (27)–(28) numerically and
by computer simulation �� � ����. They closely agree with
each other. That is, the derived theory explains the computer
simulation quantitatively. Figure 2 shows that � rises more
rapidly than � in Hebbian learning; in other words, � is
relatively large when compared with �, meaning the variety
among students disappears rapidly in Hebbian learning.

C. Perceptron learning

The update procedure for perceptron learning is


�sgn���� �� � � ����� sgn���
 (29)

Using this expression, �
����, �
��� and
�

��
�

in the
case of perceptron learning can be obtained as follows
analytically[9], [16].

�
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� (30)
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(31)

In this section, �
����� and �
�
��� are derived. Using Eq.
(29), �
����� and �
�
��� in the case of perceptron learning
are obtained as follows analytically:

�
����� �

�
��������������� ��� � ���������sgn������

�
�� ��

��
(32)
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��� ��� (33)

where

� 	 ��� �������
�
������

��� ���� � � � ����
(34)

and the definitions of ���� and �� are

���� 	
� �

	

��� �� 	 ���
��

�	


�
���

�

	

 (35)

Figure 3 shows a comparison between the analytical results
regarding the dynamical behaviors of � and �, which are
obtained by solving Eqs. (21)–(25), (30)–(33) numerically and
by computer simulation �� � ����. They closely agree with
each other. That is, the derived theory explains the computer
simulation quantitatively. Figure 3 shows that � is smaller
than � in the early period of learning (� 	 �
�), which means
perceptron learning maintains the variety among students for
a longer time than Hebbian learning.

D. AdaTron learning

The update procedure for AdaTron learning is


�sgn���� �� � �������� 
 (36)

Using this expression, �
����, �
��� and
�

��
�

in the
case of AdaTron learning can be obtained as follows
analytically[9], [16]:
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In this section, �
����� and �
�
��� are derived. Using Eq.
(36), �
����� and �
�
��� in the case of AdaTron learning
are obtained as Eqs. (40) and (41) analytically, where the
definitions of �, ���� and �� are Eqs. (34) and (35),
respectively.

Figure 4 shows a comparison between the analytical results
regarding the dynamical behaviors of � and �, which are
obtained by solving Eqs. (21)–(25), (38)–(41) numerically
and by computer simulation �� � ����. They closely agree
with each other. That is, the derived theory explains the
computer simulation quantitatively. Figure 4 shows that � is
relatively smaller when compared with � than in the cases
of Hebbian learning and perceptron learning. This means
AdaTron learning maintains variety among students most out
of these three learning rules.

V. DISCUSSION

The results in the previous section showed that AdaTron
learning maintains the variety among students best out of the
three learning rules. Thus, AdaTron learning is expected to
be the best advanced for ensemble learning. To confirm this
prediction, we have obtained numerical ensemble generaliza-
tion errors �� in the case of � � � by using � and � for
the three learning rules, that is Figures 2–4, and Eqs. (18)–
(20). Figures 5–7 show the results. In these figures, MV and
WM indicate the majority vote and weight mean, respectively.
Numerical integrations of Eq. (18) in theoretical calculations
have been executed by using the six-point closed Newton-
Cotes formula. In the computer simulation, � � ��� and
ensemble generalization errors have been obtained through
tests using ��� random inputs at each time step. In each figure,
the result of theoretical calculations of � � � is also shown
to clarify the make effect of the ensemble.

These three figures show that the ensemble generalization
errors obtained by theoretical calculation explain the computer
simulation quantitatively. Though the generalization errors
of the three learning rules are all improved by increasing
� from 1 to 3, the degree of improvement is small in
Hebbian learning and large in AdaTron learning. That is, the
effect of the ensemble in AdaTron learning is the largest, as
predicted above, due to the relationship between � and �.
AdaTron learning originally featured the fastest asymptotic

characteristic of the three learning rules[9]. However, it has
disadvantage that the learning is slow at the beginning; that
is, the generalization error is larger than for the other two
learning rules in the period of � 	 �. This paper shows that
AdaTron learning has a good affinity with ensemble learning
in regard to “the variety among students” and the disadvantage
of the early period can be improved by combining it with
ensemble learning.

From the perspective of the difference between the majority
vote and the weight mean, Figure 5–7 show that the improve-
ment by weight mean is larger than that by majority vote in
all three learning rules. Improvement in the generalization
error by averaging connection weights of various students
can be understood intuitively because the mean of students
is close to that of the teacher in Figure 1(a). The reason why
the improvement in the majority vote is smaller than that in
the weight mean is considered to be that the variety among
students cannot be utilized as effectively by the majority
vote as by the weight mean. However, the majority vote can
determine an ensemble output only using outputs of students,
and is easy to implement. It is, therefore, significant that the
effect of an ensemble in the case of the majority vote has
been analyzed quantitatively.

Figure 8 shows the results of computer simulations where
� � ���, � � �� �� ��� �� until � � ��� in order
to investigate asymptotic behaviors of generalization errors.
Asymptotic behavior of generalization error in AdaTron learn-
ing in the case of the number � of students at unity is
������[9], [12]. Asymptotic order of the generalization error
in the case of ensemble learning is considered equal to that
of � � �, since properties of � � �� ��� �� are parallel to
those of � � � in Figure 8. This figure also shows that the
effect of ensemble learning on AdaTron learning is maintained
asymptotically. Improvement in the generalization error tends
to be saturated since the difference between the generalization
error at � � �� and that at � � �� on a log scale is very
small.

VI. CONCLUSION

This paper discussed ensemble learning of � nonlinear
perceptrons, which determine their outputs by sign functions
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Fig. 6. Dynamical behaviors of ensemble gener-
alization error �� in perceptron learning.
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Fig. 7. Dynamical behaviors of ensemble gener-
alization error �� in AdaTron learning.
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Fig. 8. Asymptotic behavior of generalization error of majority vote in
AdaTron learning. Computer simulations, except for the solid line.

within the framework of online learning and statistical me-
chanics. We have shown that the ensemble generalization error
can be calculated by using two order parameters, that is the
similarity between the teacher and a student, and the similarity
among students. The differential equations that describe the
dynamical behaviors of these order parameters have been
derived in the case of general learning rules. The concrete
forms of these differential equations have been derived an-
alytically in the cases of three well-known rules: Hebbian
learning, perceptron learning and AdaTron learning. As a
result, these three rules have different characteristics in their
affinity for ensemble learning, that is, “maintaining variety
among students.” The results show that AdaTron learning is

superior to the other two rules with respect to that affinity.
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