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Abstract— We analyze the generalization performance of a
student in a model composed of linear perceptrons: a true
teacher, ensemble teachers, and the student. Calculating the
generalization error of the student analytically using statistical
mechanics in the framework of online learning, we prove that
when the learning rate satisfies η < 1, the larger the number
K is and the more variety the ensemble teachers have, the
smaller the generalization error is. On the other hand, when
η > 1, the properties are completely reversed. If the variety
of the ensemble teachers is rich enough, the direction cosine
between the true teacher and the student becomes unity in the
limit of η → 0 and K → ∞.

I. INTRODUCTION

Learning is to infer the underlying rules that dominate
data generation using observed data. Observed data are input-
output pairs from a teacher and are called examples. Learning
can be roughly classified into batch learning and online
learning [1]. In batch learning, given examples are used
more than once. In this paradigm, a student becomes to give
correct answers after training if the student has adequate
freedom. However, it is necessary to have a long amount of
time and a large memory in which to store many examples.
On the contrary, in online learning examples once used are
discarded. In this case, a student cannot give correct answers
for all examples used in training. However, there are merits,
for example, a large memory for storing many examples isn’t
necessary, and it is possible to follow a time variant teacher.

Recently, we [5], [6] analyzed the generalization perfor-
mance of ensemble learning [2], [3], [4] in a framework of
online learning using a statistical mechanical method [1], [8].
Using the same method, we also analyzed the generalization
performance of a student supervised by a moving teacher
that goes around a true teacher[7]. As a result, it was proven
that the generalization error of a student can be smaller than
a moving teacher, even if the student only uses examples
from the moving teacher. In an actual human society, a
teacher observed by a student does not always present the
correct answer. In many cases, the teacher is learning and
continues to change. Therefore, the analysis of such a model
is interesting for considering the analogies between statistical
learning theories and an actual human society.

On the other hand, in most cases in an actual human
society a student can observe examples from two or more
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teachers who differ from each other. Therefore, we analyze
the generalization performance of such a model and discuss
the use of imperfect teachers in this paper. That is, we con-
sider a true teacher and K teachers called ensemble teachers
who exist around the true teacher. A student uses input-output
pairs from ensemble teachers in turn or randomly. In this
paper, we treat a model in which all of the true teacher, the
ensemble teachers and the student are linear perceptrons[5]
with noises. We obtain order parameters and generalization
errors analytically in the framework of online learning using
a statistical mechanical method. As a result, it is proven that
when student’s learning rate satisfies η < 1, the larger the
number K is and the more variety the ensemble teachers
have, the smaller the student’s generalization error is. On
the other hand, when η > 1, the properties are completely
reversed. If the variety of ensemble teachers is rich enough,
the direction cosine between the true teacher and the student
becomes unity in the limit of η → 0 and K → ∞.

II. MODEL

In this paper, we consider a true teacher, K ensemble
teachers and a student. They are all linear perceptrons with
connection weights A, Bk and J , respectively. Here, k =
1, . . . , K . For simplicity, the connection weight of the true
teacher, the ensemble teachers and the student are simply
called the true teacher, the ensemble teachers and the student,
respectively. True teacher A = (A1, . . . , AN ), ensemble
teachers Bk = (Bk1, . . . , BkN ), student J = (J1, . . . , JN )
and input x = (x1, . . . , xN ) are N dimensional vec-
tors. Each component Ai of A is drawn from N (0, 1)
independently and fixed, where N (0, 1) denotes Gaussian
distribution with a mean of zero and variance unity. Some
components Bki are equal to Ai multiplied by –1, the others
are equal to Ai. Which component Bki is equal to −Ai is
independent from the value of Ai. Hence, Bki also obeys
N (0, 1). Bki is also fixed. The direction cosine between Bk

and A is RBk and that between Bk and Bk′ is qkk′ . Each
of the components J0

i of the initial value J0 of J is drawn
from N (0, 1) independently. The direction cosine between
J and A is RJ and that between J and Bk is RBkJ . Each
component xi of x is drawn from N (0, 1/N) independently.
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Thus,

〈Ai〉 = 0,
〈
(Ai)

2
〉

= 1, (1)

〈Bki〉 = 0,
〈
(Bki)

2
〉

= 1, (2)〈
J0

i

〉
= 0,

〈(
J0

i

)2〉
= 1, (3)

〈xi〉 = 0,
〈
(xi)

2
〉

=
1
N

, (4)

RBk =
A · Bk

‖A‖‖Bk‖ , qkk′ =
Bk · Bk′

‖Bk‖‖Bk′‖ , (5)

RJ =
A · J

‖A‖‖J‖ , RBkJ =
Bk · J

‖Bk‖‖J‖ , (6)

where 〈·〉 denotes a mean.
Figure 1 illustrates the relationship among true teacher

A, ensemble teachers Bk, student J and direction cosines
qkk′ , RBk, RJ and RBkJ .

Fig. 1. True teacher A, ensemble teachers Bk and student J.
qkk′ , RJ , RBk and RBkJ are direction cosines.

In this paper, the thermodynamic limit N → ∞ is also
treated. Therefore,

‖A‖ =
√

N, ‖Bk‖ =
√

N, ‖J0‖ =
√

N, ‖x‖ = 1.
(7)

Generally, norm ‖J‖ of the student changes as time step
proceeds. Therefore, ratios lm of the norm to

√
N are

introduced and called the length of the student. That is,
‖Jm‖ = lm

√
N , where m denotes the time step.

The outputs of the true teacher, the ensemble teachers,
and the student are ym + nm

A , vm
k + nm

Bk and umlm + nm
J ,

respectively. Here,

ym = A · xm, (8)

vm
k = Bk · xm, (9)

umlm = Jm · xm, (10)

nm
A ∼ N (

0, σ2
A

)
, (11)

nm
Bk ∼ N (

0, σ2
Bk

)
, (12)

nm
J ∼ N (

0, σ2
J

)
. (13)

That is, the outputs of the true teacher, the ensemble teachers
and the student include independent Gaussian noises with
variances of σ2

A, σ2
Bk , and σ2

J , respectively. Then, ym, vm
k ,

and um of Eqs. (8)–(10) obey Gaussian distributions with a
mean of zero and variance unity.

Let us define the error εBk between true teacher A and
each member Bk of the ensemble teachers by the squared
errors of their outputs:

εm
Bk ≡ 1

2
(ym + nm

A − vm
k − nm

Bk)2 . (14)

In the same manner, let us define error εBkJ between each
member Bk of the ensemble teachers and student J by the
squared errors of their outputs:

εm
BkJ ≡ 1

2
(vm

k + nm
Bk − umlm − nm

J )2 . (15)

Student J adopts the gradient method as a learning rule
and uses input x and an output of one of the K ensemble
teachers Bk in turn or randomly for updates. That is,

Jm+1 = Jm − η
∂εm

BkJ

∂Jm (16)

= Jm + η (vm
k + nm

Bk − umlm − nm
J )xm,(17)

where η denotes the learning rate of the student and is a
constant number. In cases where the student uses K ensemble
teachers in turn, k = mod (m,K) + 1. Here, mod (m,K)
denotes the remainder of m divided by K . On the other
hand, in random cases, k is a uniform random integer that
takes one of 1, 2, . . . , K .

Generalizing the learning rules, Eq. (17) can be expressed
as

Jm+1 = Jm + fkxm (18)

= Jm + f (vm
k + nm

Bk, umlm + nm
J )xm, (19)

where f denotes a function that represents the update amount
and is determined by the learning rule.

In addition, let us define the error εJ between true teacher
A and student J by the squared error of their outputs:

εm
J ≡ 1

2
(ym + nm

A − umlm − nm
J )2 . (20)

III. THEORY

A. Generalization error

A goal of statistical learning theory is to theoretically
obtain generalization errors. Since generalization error is the
mean of errors for the true teacher over the distribution
of new input and noises, generalization error εBkg of each
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member Bk of the ensemble teachers and εJg of student J
are calculated as follows. Superscripts m, which represent the
time step, are omitted for simplicity unless stated otherwise.

εBkg =
∫

dxdnAdnBkP (x, nA, nBk) εBk (21)

=
∫

dydvkdnAdnBkP (y, vk, nA, nBk)

×1
2

(y + nA − vk − nBk)2 (22)

=
1
2
(−2RBk + 2 + σ2

A + σ2
Bk

)
, (23)

εJg =
∫

dxdnAdnJP (x, nA, nJ) εJ (24)

=
∫

dydudnAdnJP (y, u, nA, nJ )

×1
2

(y + nA − ul − nJ)2 (25)

=
1
2
(−2RJ l + l2 + 1 + σ2

A + σ2
J

)
. (26)

Here, integrations have been executed using the following:
y, vk and u obey N (0, 1). The covariance between y and vk

is RBk, that between vk and u is RBkJ , and that between
y and u is RJ . All nA, nBk, and nJ are independent from
other probabilistic variables.

B. Differential equations for order parameters and their
analytical solutions

To simplify the analysis, the following auxiliary order
parameters are introduced:

rJ ≡ RJ l, (27)

rBkJ ≡ RBkJ l. (28)

Simultaneous differential equations in deterministic forms
[8], which describe the dynamical behaviors of order pa-
rameters, have been obtained based on self-averaging in the
thermodynamic limits as follows:

drBkJ

dt
=

1
K

K∑
k′=1

〈fk′vk〉, (29)

drJ

dt
=

1
K

K∑
k=1

〈fky〉, (30)

dl

dt
=

1
K

K∑
k=1

(
〈fku〉 +

1
2l
〈f2

k 〉
)

. (31)

Here, dimension N has been treated to be sufficiently greater
than the number of ensemble teachers K . Time is defined
by t = m/N , that is, time step m normalized by dimension
N . Note that the above differential equations are identical
whether the K ensemble teachers are used in turn or ran-
domly.

Since linear perceptrons are treated in this paper, the
sample averages that appeared in the above equations can

be easily calculated as follows:

〈fku〉 = η
(rBkJ

l
− l
)

, (32)

〈f2
k 〉 = η2

(
l2 − 2rBkJ + 1 + σ2

Bk + σ2
J

)
, (33)

〈fky〉 = η (RBk − rJ ) , (34)

1
K

K∑
k′=1

〈fk′vk〉 = η

(
−rBkJ +

1
K

K∑
k′=1

qkk′

)
. (35)

Since all components Ai, J0
i of true teacher A, and the

initial student J0 are drawn from N (0, 1) independently and
because the thermodynamic limit N → ∞ is also treated,
they are orthogonal to each other in the initial state. That is,

RJ = 0 when t = 0. (36)

In addition,

l = 1 when t = 0. (37)

By using Eqs. (32)–(37), simultaneous differential equa-
tions Eqs. (29)–(31) can be solved analytically as follows:

rBkJ =
1
K

K∑
k′=1

qkk′
(
1 − e−ηt

)
, (38)

rJ =
1
K

K∑
k=1

RBk

(
1 − e−ηt

)
, (39)

l2 =
1

2 − η

[
2 (1− η) q̄ + η

(
1 + σ̄2

B + σ2
J

)]
+

[
1 +

1
2 − η

(
η
(
1 + σ̄2

B + σ2
J

)− 2q̄
)]

eη(η−2)t

− 2q̄e−ηt, (40)

where

q̄ =
1

K2

K∑
k=1

K∑
k′=1

qkk′ , (41)

σ̄2
B =

1
K

K∑
k=1

σ2
Bk. (42)

IV. RESULTS AND DISCUSSION

In this section, we treat the case where direction cosines
RBk between the ensemble teachers and the true teacher,
direction cosines qkk′ among the ensemble teachers and vari-
ances σ2

Bk of the noises of ensemble teachers are uniform.
That is,

RBk = RB, k = 1, . . . , K, (43)

qkk′ =
{

q, k 	= k′,
1, k = k′, (44)

σ2
Bk = σ2

B . (45)

In this case, Eqs. (41) and (42) are expressed as

q̄ = q +
1 − q

K
, (46)

σ̄2
B = σ2

B. (47)
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The dynamical behaviors of generalization errors εJg have
been analytically obtained by solving Eqs. (26), (27) and
(38)–(47). Figure 2 shows the analytical results and the
corresponding simulation results, where N = 2000. In
computer simulations, K ensemble teachers are used in turn.
εJg was obtained by averaging the squared errors for 104

random inputs at each time step. Generalization error εBg of
one of the ensemble teachers is also shown. The dynamical
behaviors of R and l are shown in Fig. 3.
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Fig. 2. Dynamical behaviors of generalization errors εJg . Theory and
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In these figures, the curves represent theoretical results.
The dots represent simulation results. Conditions other than
q are common: η = 0.3, K = 3, RB = 0.7, σ2

A = 0.0, σ2
B =

0.1 and σ2
J = 0.2. Figure 2 shows that the smaller q is,

that is, the richer the variety of the ensemble teachers is, the
smaller generalization error εJg of the student is. Especially
in the cases of q = 0.6 and q = 0.49, the generalization
error of the student becomes smaller than a member of the
ensemble teachers after t ≈ 5. This means that the student
in this model can become cleverer than each member of
the ensemble teachers even though the student only uses
the input-output pairs of members of the ensemble teachers.
Figure 3 shows that the larger the variety of the ensemble
teachers is, the larger direction cosine RJ is and the smaller
length l of the student is. The reason why minimum value
0.49 of q is taken as the squared value of RB = 0.7 in Figs.
2 and 3 is described later.

In Figs. 2 and 3, εJg, RJ and l almost seem to reach a
steady state by t = 20. The macroscopic behaviors of t → ∞
can be understood theoretically since the order parameters
have been obtained analytically. Focusing on the signs of
the powers of the exponential functions in Eqs. (38)–(40), we
can see that εJg and l diverge if η < 0 or η > 2. The steady
state values of rBkJ , rJ and l2 in the case of 0 < η < 2 can
be easily obtained by substituting t → ∞ in Eqs. (38)–(40)
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as follows:

rBkJ → q +
1 − q

K
, (48)

rJ → RB, (49)

l2 → 1
2 − η

(
2 (1 − η)

(
q +

1 − q

K

)
+ η

(
1 + σ2

B + σ2
J

))
(50)

= q +
1 − q

K

+
η

2 − η

(
(1 − q)(K − 1)

K
+ σ2

B + σ2
J

)
.(51)

Equations (26), (27) and (48)–(51) show the following:
in the case of η = 1, the steady value of length l is
independent from the number K of teachers and direction
cosine q among the ensemble teachers. Therefore, the steady
value of generalization error εJg and direction cosine RJ

are independent from K and q in this case. In the case of
0 < η < 1, the smaller q is or the larger K is, the smaller
the steady values of l and εJg are and the larger the steady
value of RJ is. In the case of 1 < η < 2, on the contrary, the
smaller q is or the larger K is, the larger the steady values
of l and εJg are and the smaller the steady value of RJ is.
That is, in the case of η < 1, the more teachers exist and the
richer the variety of teachers is, the cleverer the student can
become. On the contrary, in the case of η > 1, the number of
teachers should be small and the variety of teachers should
be low for the student to become clever.

In the right hand side of Eq. (51), since the second and
the third terms are positive, the steady value of l is larger
than

√
q. In addition, since l → √

q in the limit of η → 0
and K → ∞, Eqs. (27) and (49) show RJ → RB/

√
q. On

the other hand, when S and T are generated independently
under conditions where the direction cosine between S and
P and between T and P are both R0, where S, T and P are
high dimensional vectors, the direction cosine between S and
T is q0 = R2

0 . Therefore, if ensemble teachers have enough

1732



variety that they have been generated independently under
the condition that all direction cosines between ensemble
teachers and the true teacher are RB , RB/

√
q = 1, then

direction cosine RJ between the student and the true teacher
approaches unity regardless of the variances of noises in the
limit of η → 0 and K → ∞.

Figures 4–7 show the relationships between the learning
rate η and εJg, RJ . In Figs 4 and 5, K = 3 and is fixed. In
Figs 6 and 7, q = 0.49 and is fixed. Conditions other than K
and q are σ2

A = σ2
B = σ2

J = 0.0 and RB = 0.7. Computer
simulations have been executed using η = 0.3, 0.6, 1.0, 1.4
and 1.7. The values on t = 20 are plotted for the simulations
and considered to have already reached a steady state.
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These figures show the following: the smaller learning rate
η is, the smaller generalization error εJg is and the larger
direction cosine RJ is. Needless to say, when η is small,
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learning is slow. Therefore, residual generalization error and
learning speed are in a relationship of tradeoff. The phase
transition in which εJg diverges and RJ becomes zero at
η = 2 is shown. In the case of η < 1, the larger K is or
the smaller q is, that is, the richer the variety of ensemble
teachers is, the smaller εJg is and the larger RJ is. On the
contrary, the properties are completely reversed in the case
of η > 1.

V. CONCLUSION

We analyzed the generalization performance of a student
in a model composed of linear perceptrons: a true teacher,
ensemble teachers, and the student. The generalization error
of the student was analytically calculated using statistical
mechanics in the framework of online learning, proving that
when student’s learning rate satisfies η < 1, the larger the
number K is and the more variety the ensemble teachers
have, the smaller the generalization error is. On the other
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hand, when η > 1, the properties are completely reversed. If
the variety of ensemble teachers is rich enough, the direction
cosine between the true teacher and the student becomes
unity in the limit of η → 0 and K → ∞.
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